

SRM Usage Monitoring

Dirk Duellmann (many slides by Giuseppe Lo Presti with input from Shaun De Witt) CERN IT SRM Workshop @ DESY 18th May 2009

1

CH-1211 Genève 23 Switzerland Dirk.Duellmann@cern.ch

CERN IT Department

Managemen

Data

loon w

Motivation

CERN**IT** Department

- SRM will be used for STEP09 and 2009/2010 run
 - Workload will still ramp-up for the run period
- Do we have the monitoring in place to answer questions like:
 - How much headroom does the system provide for increased experiment requests?
 - Can we quickly spot current bottlenecks?
 - SRM processing (front-end vs back-end)
 - Storage back-end
 - Do we have an end-to-end measure of failures and retry counts at the different levels?
 - Can we spot unexpected use and originating users?
- Can we connect the usage numbers from experiment production systems down to storage
 - at Tier 0, Tier 1 and Tier 2
- Do we even have suitable metrics logged?

2

CERN IT Department CH-1211 Genève 23 Switzerland Dirk.Duellmann@cern.ch

Manageme

First Step - collect status quo

- Discussions so far between
 FTS, CASTOR, dCache, DPM
- Main focus so far Tier 0 processing
 and Tier 1 logs from FTS, CASTOR
 - starting to collect & process DPM logs

CERN IT Department CH-1211 Genève 23 Switzerland Dirk.Duellmann@cern.ch

Managemen

3

Department

Present deployment and statistics gathering

CERN

- At CERN
 - 5 endpoints, one per LHC VOs + general public instance
 - 3 nodes each
- At RAL
 - 5 endpoints; looking at ATLAS and CMS only
 - 2 nodes each, except ATLAS (4 nodes)
- At CNAF
 - General endpoint + CMS dedicated endpoint
 - 3 nodes each
- Statistics gathered on a **single node** of each endpoint, for a 2-month time interval
 - From March 1st to April 30th

Switzerland

www.cern.ch/it

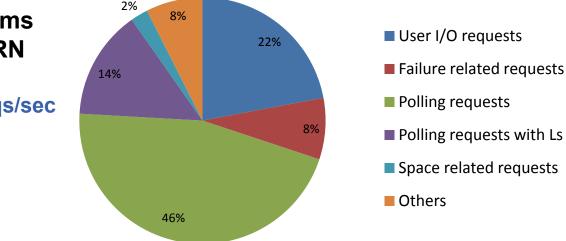
SRM methods: a classification

- To ease the breakdown analysis, the following categories have been defined:
- User I/O requests
 - srmPrepareTo, srmCopy, srmBringOnline, ...
- Failure related requests
 - srmAbortRequest, srmAbortFiles, srmReleaseFiles
- Polling/query requests
 - srmPing, srmStatusOf, srmLs
- Space related requests
 - srmGetSpaceTokens, srmReserveSpace, …
- Others
 - 12 more methods (the specs include 39 methods)

Department

Switzerland

CERN IT Department CH-1211 Genève 23

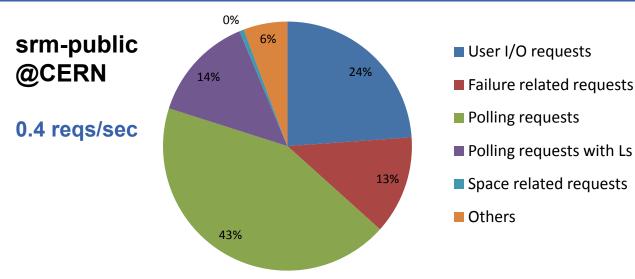

fi

00D W/

Breakdown by SRM method 1/3 CERNIT

srm-cms @CERN

1.2 reqs/sec



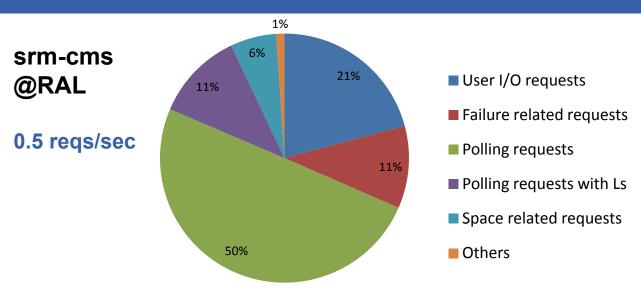
- Observations
 - Fair ratio of polling vs. I/O (prepare) requests
 - but note the amount of srmLs, also used for polling
 - Failure/success ratio not taken into account
 - These are all the incoming requests
 - "Failure related" requests are normally issued to clean up after a failure has occurred at either ends

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

LOOD WAT

Breakdown by SRM method 2/3

- Observations
 - The "others" category for srm-public includes the whole set of existing SRM methods
 - whereas only a fraction of them is effectively used elsewhere
 - srm-public serves the DTEAM VO, and many SRM tests (e.g. S2) run as DTEAM...



CER

Department

LOOD WAT

Breakdown by SRM method 3/3

- Observations
 - At a Tier1 the ratio polling/prepare requests is slightly worse
 - And the number of "other" requests is negligible
 - Only 14 SRM methods used, out of the 39 in the specs

CERI

Department

Switzerland

CERN IT Department CH-1211 Genève 23

www.cern.ch/it

loon war

Breakdown by client

- No detailed data yet...
- But main SRM client @ CERN is FTS by far
 - 80-90% of the total load, depending on the endpoint
- Clients at T1 sites typically just follow

Giuseppe Lo Presti, SRM usage statistics - 9

Switzerland

CH-1211 Genève 23

www.cern.ch/it

- A clear evidence from this exercise is the different behavior depending on the VO
 - ATLAS ran at 8 requests/s, 5 times more than LHCb or CMS, whereas ALICE ran at 2 orders of magnitude less
 - The ATLAS average file size played a role here
 - To be still checked whether over the observation period all VOs ran at any constant load
 - **STEP'09** will hopefully provide a baseline
 - The load at T1s is of the same order of the load at the T0
 - T1 storage activity is much more "Grid-oriented", thus it mostly goes through SRM

Switzerland

CERN IT Department CH-1211 Genève 23

www.cern.ch/it

Conclusions

- General request-to-poll ratio looks OK
 - ping rate from FTS should be reviewed
 - don't expect large load reduction once "client back-off" is in place
 - but feature was meant for overload conditions anyway
 - should look at Is vs req status
 - once req status is fixed!
- Categorisation of call rates suggested by Giuseppe looks useful (also to experiments?)
 - Now being implemented into CASTOR monitoring as automated collection from DLF records
 - available for site fabric monitoring as other metrics

Dirk.Duellmann@cern.ch

More conclusions

• Rate monitoring will also allow for detection of unused API calls

- apart from public SRM endpoint were S2 tests probe "full" API
- this alone does not mean much though!
- First results not fully understood yet
 - eg ATLAS rate expectations differ from FTS and SRM by one order
 - eg RAL rates look high
- Should try to close loop with experiments now and put automated usage monitoring in place before the run

Department

Topics for discussion

ERN**IT** Department

- Can we agree on call and error rate metrics here?
 - For error rates a minimal subset could:
 - how many user perceived errors came from SRM component itself?
 - how many from the storage back-end?
 - how many from remote end of a transfer?
 - Focus on spotting costly or deep retrials
 - transfers failing at the end
 - repeat request which go more than one level into the s/w stack
- Rate metrics per node and per VO?
 - probably need both
 - for site diagnostic of h/w utilisation
 - for experiment cross check with total load from production system
- Latency metrics (eg time to turl)
 - so far obtained via FTS
 - intrinsic calculations and regular summaries?

Switzerland

Dirk.Duellmann@cern.ch