Track Reconstruction Performance for Semi-stable Charged Particles at CMS

Samuel Bein, Viktor Kutzner, Peter Schleper, Georg Steinbrück, <u>Alexandra Tews</u>, Benedikt Vormwald

Weekly Group Meeting April 4th, 2018

《曰》 《聞》 《臣》 《臣》

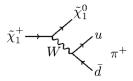
Track Reconstruction Performance for Semi-stable Charged Particles at CMS

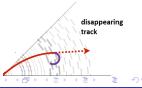
Motivation

- OMS Tracking
- Tracking Efficiency
- Tracking Fake Rate
- Summary & Outlook

きょう きょ

Semi-stable Charged Particles

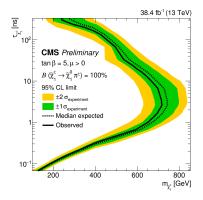

- Several BSM models address open questions, such as DM and fine tuning
- Many LHC searches for BSM physics and SUSY


Models with small mass splitting between LSP and NLSP yield semi-stable particles:

- eg: $\chi_1^{\pm} \rightarrow \chi_1^0 + \pi^{\pm}$
- Δm (χ_1^{\pm}, χ_1^0) small, $\mathcal{O}(m_{\pi^{\pm}} 1 \text{ GeV})$ \rightarrow limited phase space $\Rightarrow \pi^{\pm}$ too soft for reconstruction
- Typical chargino lifetime: $\mathcal{O}(1 \, \, {
 m ns}) o c au = \mathcal{O}(30 \, \, {
 m cm})$
- \Rightarrow Semi-stable charged particle (χ_1^{\pm})

Disappearing track signatures:

- ${\scriptstyle \bullet}\,$ Decay inside the tracker volume \rightarrow short track
- Decay products not reconstructed:
 - (1) Neutral BSM particle: not detectable
 - (2) Soft pion: too low in momentum (\sim 100 MeV)
 - \rightarrow Track 'disappears'



Tracking Performance for Short Tracks

Existing Searches for Disappearing Tracks at CMS

Search for disappearing tracks at $\sqrt{s} = 13$ TeV (EXO-16-044) [1] :

- Integrated luminosity of 38.4 fb⁻¹, 2015 and 2016 data
- Interpretation of results in specific SUSY model
- Limits on cross section of direct electroweak chargino production
- At 95 % CL m $_{\chi^\pm}$ < 715 GeV $(\tau_{\chi^\pm}$ = 3 ns) are excluded

CMS-PAS-EXO-16-044

Motivation

CMS Tracking Tracking Efficiency Tracking Fake Rate Summary & Outlook

Former and Future Searches

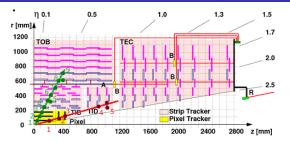
Existing search (EXO-16-044):

Major backgrounds:

- Leptons
- Fake tracks = not truly associated with (one single) charged particle
 <u>Limitations:</u>
- Min track length = 7 hits
 - \rightarrow region of small $\tau_{\chi\pm}$ out of reach

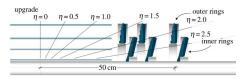
Future searches for disappearing tracks at CMS:

- \bullet Discrimination against SM background: additional handle dE/dx
- Inclusion of shorter tracks
 - \rightarrow How short can tracks be efficiently reconstructed?
 - \rightarrow Increasing fake rate for shorter tracks


Run period	Estimated no. of Leptons	f background events Spurious tracks			
2015	0.1 ± 0.1	$0^{+0.1}_{-0}$			
2016A	$2.0\pm0.4\pm0.1$	$0.4\pm0.2\pm0.4$			
2016B	$3.1\pm0.6\pm0.2$	$0.9\pm0.4\pm0.9$			
Total	$5.2\pm0.8\pm0.3$	$1.3\pm0.4\pm1.0$			

CMS-PAS-EXO-16-044

(日本) (日本) (日本)

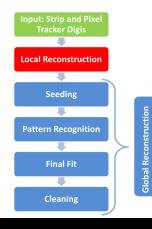

-

CMS Tracking - Tracker

- Tracking performance for short tracks
 - Use 2016 and 2017 data and simulation
 - Pixel upgrade (phase-1) in 2017
 - Phase-1 barrel radii : 2.9 / 6.8 / 10.9 / 16.0 cm

CMS tracker (before the Phase-1 upgrade)

- Track length measured in hit tracker layers
 - Several hits per layer due to overlapping layers


4 注入

or in stereo modules

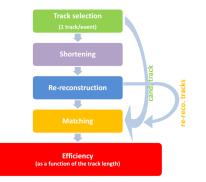
Phase-1 pixel detector

CMS Tracking - Combinatorial Track Finder

- Iterative tracking:
 Combinatorial Track Finder
- Proceeds 4 steps in 9 (7) iterations, (Phase-0)

9 main iterations

step name	seeding	target track		
Initial	pixel quadruplets	prompt, high p_T		
LowPtQuad	pixel quadruplets	prompt, low <i>p</i> _T		
HighPtTriplet	pixel triplets	prompt, high <i>p</i> _T recovery		
LowPtTriplet	pixel triplets	prompt, low <i>p</i> _T recovery		
DetachedQuad	pixel quadruplets	displaced——		
DetachedTriplet	pixel triplets	displaced—— recovery		
MixedTriplet	pixel+strip triplets	displaced—		
PixelLess	inner strip triplets	displaced+		
TobTec	outer strip triplets	displaced++		
JetCore	pixel pairs in jets	high p _T jet		
Muon inside-out	muon-tagged tracks	muon		
Muon outside-in	standalone muon	muon		


- Progressively looser requirements
- Minimum of 3 measurements (helix)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Phase-0: pair (+ vertex) and triplet based seeding
- Phase 1: triplets and quadruplets

3

Tracking Efficiency for Short Tracks

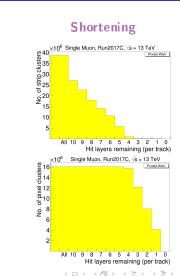

- New method: tracking efficiency for short tracks
- Determined in-situ from data
- Shorten one long track per event to a certain length
- Shortening on the basis of clusters
- Full re-reconstruction of the track remains i.e. seeding, pattern recognition,
- Matching of reco. track to sel. track: ΔR < 0.01

< 🗇 🕨

(E) < E)</p>

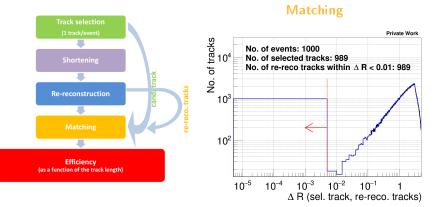
3

Tracking Efficiency for Short Tracks


Selection

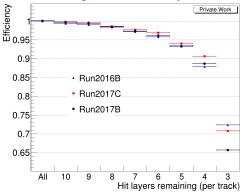
a

э


Tracking Efficiency for Short Tracks

э

Tracking Efficiency for Short Tracks


Tracking Performance for Short Tracks

< 17 >

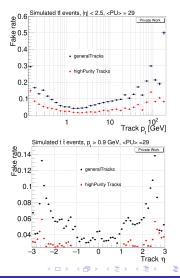
3

Tracking Efficiency for Short Tracks

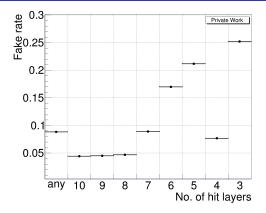
Which track length is still efficiently reconstructed ?

Efficiency at track length l = x: $\epsilon_{l=x}^{total} = \epsilon_{l=all\ lengths}^{reco.} \times \epsilon_{l=x}^{reco.}$, $\epsilon_{l=x}^{reco.} = \frac{N_{l=x}^{re-reco.}}{N_{l=x}}$, N = no. of tracks • 2016 and 2017 pp-collision data, $\sqrt{s} = 13$ TeV. 4M events each

 SingleMuon trigger events with ≥ 1 candidate track


Even tracks with only 3 hit layers can still be reconstructed with an efficiency of $\epsilon_{l=3}^{reco.} = 66 - 72 \%$, [*l*] = hit layers

Tracking Fake Rate for Average Length Tracks


- Fake tracks second-leading background, increasing for short tracks
- Fake rate determined from simulation in truth matching
- matched track = associated to a simulated particle, fract. of shared hits > 75 %

High fake rate:

- *p_t* < 0.9 GeV: low momentum of seed → broader search window to assign hits
- *p_t* > 20 GeV: production of secondary particles, few high-*p_t* particles in pp collisions
- Endcap and transition region: larger amount of material (interactions)

Tracking Fake Rate for Short Tracks

Fake rate at track length l = x: $f_{l=x} = \frac{N_{l=x}^{reco.\&\&lmatched}}{N_{l=x}^{reco.}},$ N = no. of tracks• Simulated $t\bar{t}$ events at $\sqrt{s} = 13$ TeV, no event sel., all tracks with: $p_t > 0.9$ GeV, $|\eta| < 2.5$

ightarrow Fake rate rises for short tracks

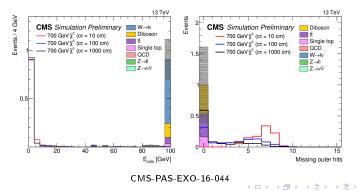
- Some features of tracking and tracker geometry visible (4 hit layers)
- Fake suppression among the major challenges of future analyses

4 注入

Tracking Fake Rate at the Fourth Layer

- CTF: four steps passed nine times (iterative tracking)
- Remove high Quality tracks after each iteration from consideration
- Criteria on track quality loosened from first to last iterations
- Fake reduction among the aims of the reconstruction

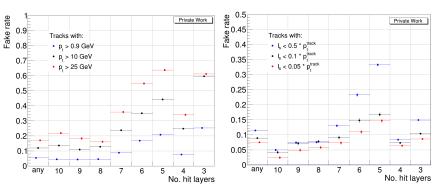
No.	initia	lowPt	highPt	low Pt	de-	de-	mixed	pixe	Tob Tec	muon
hit	(0)	Quad	Triplet	Triplet	tached	tached	Triplet	Less	(8)	Seed
layer	()	(1)	(2)	(3)	Quads	Triplet	(6)	(7)	()	OutIn
,		(-)	(-)	(-)	(4)	(5)	(-)	(.)		
any	39	26	9	8	3	6	1	4	3	<1
6	52	1	10	3	1	2	2	11	18	<1
5	73	2	6	3	1	2	2	8	3	<1
4	75	5	6	5	1	3	2	2	<1	6
3	2	3	63	12	<1	15	5	<1	<1	0


Contributions to reconstructing the tracks [%]:

(E) < E)</p>

Tracking Fake Rate for Short Disappearing Tracks

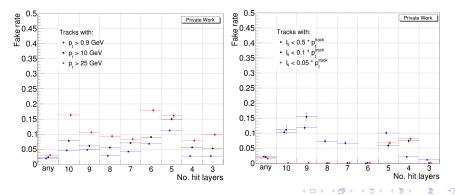
Disappearing tracks can be selected e.g. based on the track


- high p_t ,
- relative isolation I_s,
- Number of missing outer hits > 0, (see below)
- Little deposited calo. energy $(E_{calo.})$ associated, (see below)
- Cuts on these variables effect tracking performance differently

Tracking Fake Rate for Short Disappearing Tracks

pt bins, no vertex constraint

- At high p_t : production of secondary particles, few SM particles present in pp collisions
- Simulated $t\bar{t}$ events at \sqrt{s} = 13 TeV, no event sel., all tracks


Isolation bins, no vertex constraint

Tracking Fake Rate with Fake Suppression

- Fake suppression e.g.: vertex constraint, min. no. of (pixel) hits, consecutive hit pattern
- Simulated $t\bar{t}$ events at $\sqrt{s}=13$ TeV, no event sel., all track with $|d_0|<0.02$ cm, $|d_z|<0.5$ cm

p_t bins, with vertex constraint

Isolation bins, with vertex constraint

Track Reconstruction Performance for Semi-stable Charged Particles at CMS

- Semi-stable charged particles can leave 'disappearing' track signatures
- Increase sensitivity in future searches: include very short tracks
- Tracking performance will play a crucial role in such analyses
- Two different methods to determine the tracking efficiency (data) and fake rate (simu.)
- Efficiency from data: subject shortened tracks to full reconstruction, matching
- Efficiency for 3 hit layers 66 72 %
- Rate of fake tracks will increase for shorter tracks (\rightarrow fake suppression)
- Investigated:
 - a) Fake rate for tracks with 'disappearing' properties (e.g. isolated tracks...)
 - b) Means of fake suppression (e.g. vertex constraints)
- WIP: Develop full track-based selection for disappearing tracks
- WIP Tracking performance for disappearing tracks (comb. cuts)
- $\bullet \rightarrow$ Design a new search for disappearing tracks sensitive to small chargino decay lifetimes $(\tau = \mathcal{O}(0.3 \text{ ns}))$

Tracking Performance for Short Tracks

Thank you for your attention!

Tracking Performance for Short Tracks

< 🗇 🕨

æ

Backup

イロン イロン イヨン イヨン

ъ.

Existing Search for Disappearing Tracks at 13 TeV

Search for disappearing tracks in proton-proton collisions at $\sqrt{s} = 13$ TeV [1] :

- Integrated luminosity of 38.4 fb⁻¹ (2015+2016 data)
- Interpretation of results in AMSB (anomaly-mediated super-symmetry breaking)
- Limits on cross section of direct electroweak chargino production
- At 95 % CL m $_{\chi\pm}$ < 715 GeV ($\tau_{\chi\pm}$ = 3 ns) are excluded
- Signal: $qq \rightarrow \chi^{\pm}\chi^{\pm}$, $qq \rightarrow \chi^{0}\chi^{\pm}$
- $au_{\chi\pm}$ 0.1 100 ns

- Disapp. track not matched to activity in calo. or muon sys. $\rightarrow p_T^{miss.}$
- Trigger: missing transverse momentum¹
 > 75 GeV
- ¹Sum of momenta of all reconstructed objects in an event with the exception of muons
- \geq 1 ISR jets (BSM particles recoils)
- $ightarrow p_T^{miss.} \approx p_t$ of BSM particle $pprox p_t$ ISR jet
- Backgrounds: W + jets, $t\overline{t}$, $Z \rightarrow II$, $Z \rightarrow \nu\nu$, WW, ZZ, WZ, $W\gamma$, $Z\nu$, QCD multijet, single-top-quark, fake tracks

イロト イポト イヨト イヨト

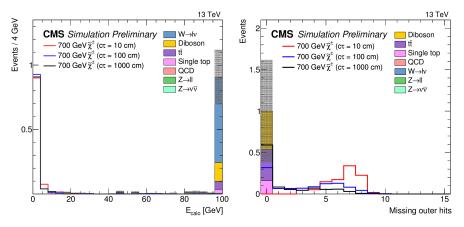
-

Existing Search for Disappearing Tracks - Selection

Event selection:

- Reduce backgrounds from QCD multijet events
- Reduce instrumental sources of $p_T^{miss.}$
- $p_T^{miss.} > 100 \text{ GeV}$
- \geq 1 jet with p_t > 110 GeV
- $\Delta\phi$ (jet1, jet2) < 2.5 rad.
- $\Delta \phi \left(p_T^{\vec{miss.}}, \text{ high-} p_t \text{-jet} \right) > 0.5 \text{ rad.}$

Candidate track selection:


- Reduce tracks background
- Reduce lepton backgrounds
- $p_t > 55 \text{ GeV}, |\eta| < 2.1$
- $|d_0| < 0.02 \text{ cm}, |d_z| < 0.5 \text{ cm}$
- $N_{miss}^{mid} = N_{miss}^{inner} = 0$
- No. pixel hits \geq 3, No. hits \geq 7
- Relative track isolation
- Isolation for jets, leptons

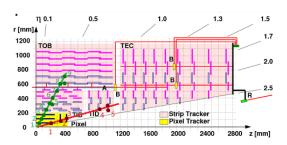
Disappearing track selection:

- $N_{miss}^{outer} \ge 3$
- E_{calo} < 10 GeV

くぼう くまう くまう

Existing Search for Disappearing Tracks - Track Properties

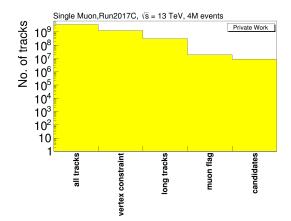
CMS-PAS-EXO-16-044


Existing Search for Disappearing Tracks - Backgrounds

- Date driven background estimation Background estimation fake tracks:
- Define sideband region of full selection: $0.02 < |d_0| < 0.1$ cm
- Fake-track rate in $Z \rightarrow \mu\mu$ sample, any track that passes the disappearing-track selection in sideband = fake track (N_{basic})
- Determine transfer factor P_{fake} to obtain fake rate for <u>nominal</u> impact parameter requirement
 - ightarrow Sample of 3-hit tracks yields d_0 distribution of fake tracks
- $N_{fake} = N_{basic} imes P_{fake}$,
- $N_{fake} = 1.3 \pm 0.4 \text{ (st at)} \pm 1.0 \text{ (syst)}$
- System. uncert.: sideband region, compare do distribution for 7-hits fake tracks (MTV)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Measure of the Track Length

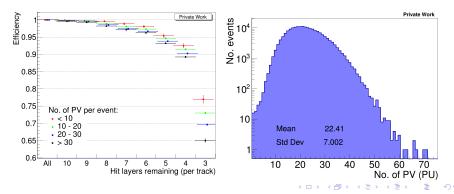

If track has more than one hit within one layer number of hit layers not enlarged

- More than one hit per layer possible
- Overlapping strip modules or stereo modules
- No requirements on track quality in counting of hit layers
- Ensured within CMS tracking algorithms
- e.g. considers tracker geometry, given track parameters
- Measure motivated by requirements of detection hard and software on a track

34.16

Candidate Track Selection (Efficiency)

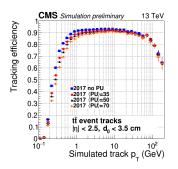
 Events with at least one isolated high transverse momentum muon

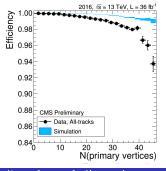

Events with one candidate track:

- Vertex constraint: $|d_0| < 0.02 \text{ cm}, |d_z| < 0.5 \text{ cm}$
- ullet Long tracks: \geq 10 hit layers
- Matched within ΔR < 0.01 to a muon (select non-fake tracks)
- If several candidate tracks one is chosen on behalf of the best fit quality

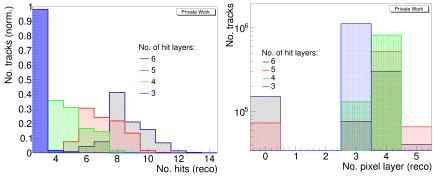
34.16

Pileup Effect on Efficiency

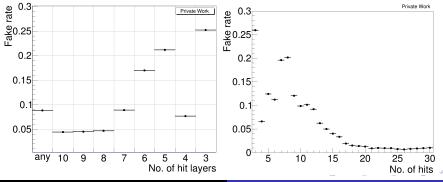

- Tracking mainly combinatorial problem
- Pileup has major effect on tracking efficiency
- 2017 pp-collision data, $\sqrt{s} = 13$ TeV, 4M events
- SingleMuon trigger events with ≥ 1 candidate track



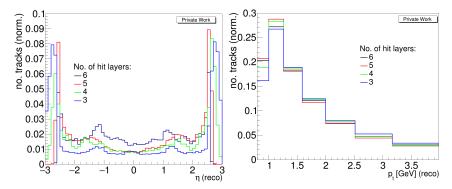
Tracking Efficiency for Average Length Tracks


- Simulated tt events
- High-purity tracks
- $|d_0| < 3.5 \text{ cm}$, $|\eta| < 2.5$.

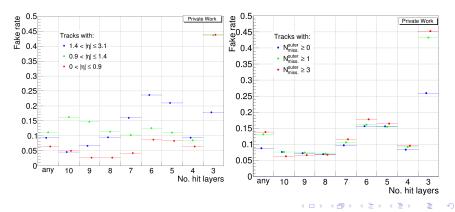
- Tag-and-probe method from $Z
 ightarrow \mu^+ \mu^-$ decays
- 2016 data (black dots) and simulation (blue bands)
- Pileup dependent dynamic inefficiency pixel, not modelled in simulation


Tracking Fake Rate - The Fourth Layer

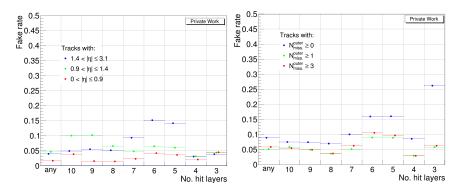
- Low fake rate at fourth layer
- Translate hit layers to hits, expect:
- ullet ightarrow high fake rate for 7 10 hits (dominated by 5th and 6th layer)
- ullet ightarrow medium fake rate for 5 6 hits
- ullet
 ightarrow low fake rate for 4 hits (dominated by 4th layer)


Tracking Fake Rate - The Fourth Layer

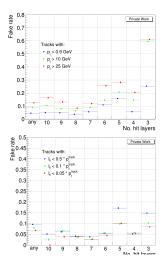
- Low fake rate at fourth layer
- Translate hit layers to hits, expect:
- ullet ightarrow high fake rate for 7 10 hits (dominated by 5th and 6th layer)
- ullet ightarrow medium fake rate for 5 6 hits
- ullet ightarrow low fake rate for 4 hits (dominated by 4th layer)

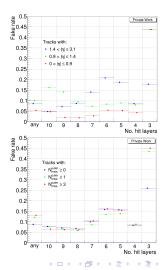

Tracking Fake Rate - The Fourth Layer

No categorization effect


Tracking Fake Rate for Short Disappearing Tracks

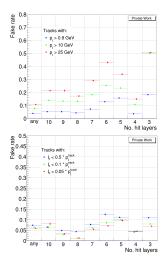
- Disappearing tracks can be selected based on the track p_t , $|\eta|$, relative isolation I_s , number of missing outer hits, $E_{calo.}$
- Cuts on these variables effect tracking differently (if at all)

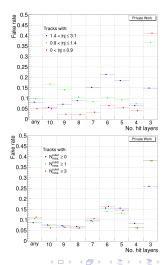

Tracking Fake Rate with Vertex Constraint


• Fake tracks can be suppressed via total number of hits, minimum number of pixel hits, restriction on the number of missing inner hits, vertex constraint

4 注入

Tracking Fake Rate with at Least Two Pixel Hits

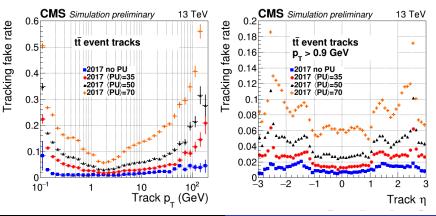




Tracking Performance for Short Tracks

æ

Tracking Fake Rate with no Missing Inner Hits



Tracking Performance for Short Tracks

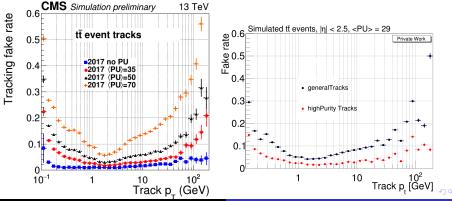
æ

Tracking Fake Rate for Average Length Tracks


- Simulated tt events
- High-purity tracks
- $|d_0|$ < 3.5 cm , $|\eta|$ < 2.5 (left) , p_t > 0.9 GeV (right)
- At high p_t : production of secondary particles, few SM particles present in pp collisions

Tracking Fake Rate - Comparison

- Simulated *t*t events
- High-purity tracks
- $|d_0| < 3.5 \text{ cm}, p_t > 0.9 \text{ GeV}$


- Simulated tt events
- $p_t > 0.9 \,\,{\rm GeV}$
- < PU > = 29

Tracking Fake Rate - Comparison

- Simulated *t*t events
- High-purity tracks
- $|d_0| < 3.5$ cm, $|\eta| < 2.5$

- Simulated tt events
- |η| < 2.5
- < PU > = 29

Tracking Performance for Short Tracks

CMS Collaboration, Search for disappearing tracks in proton-proton collisions at $\sqrt{s} = 13$ TeV,CMS-PAS-EXO-16-044, 2018, https://cds.cern.ch/record/2306201.

V. Khachatryan *et al.* [CMS Collaboration], Search for disappearing tracks in proton-proton collisions at $\sqrt{s} = 8$ TeV, JHEP **1501** (2015) 096, doi:10.1007/JHEP01(2015)096, [arXiv:1411.6006 [hep-ex]].

< 67 >

4 B N 4 B N