Observation of W and Z candidates with CMS experiment

Emanuele Di Marco "Sapienza" Università di Roma & INFN Roma

Physics at LHC 2010

Hamburg, Germany 10 June 2010

- Production of W,Z bosons is an important process at LHC
 - measurement of M_W, W width, charge and polarization asymmetries
 - W and Z cross-section measurement:
 - background normalization for Higgs, new physics searches
 - Iuminosity measurement, energy/momentum calibration
 - Parton Density Functions at LHC scale
- Vector Boson (V) + jets:
 - crucial test of QCD

probe for new physics: new physics models predict V+multi-jets productio

Large cross sections, very precise prediction (2-3% level)

Process (\sqrt{s} =7 TeV)	$\sigma_{(CTEQ6.6)}$	PDFs \oplus α_s uncertainties
W-	38.0 nb	+1.33 nb -1.39 nb
W^+	56.05	+1.90 nb -1.96 nb
Z ⁰	28.11	+0.91 nb -0.95 nb

W,Z+jets production:

E. Di Marco

- adding an extra jet costs $o(\alpha_s)$ in cross section
 - the scaling is a test of QCD
 - W,Z multi-jet probe new physics contribution
- LHC can rapidly access high (≥3,4) jet multiplicities

CMS detector at work: the building blocks the building blocks

- High granular and precise e.m. calorimeter allows:
 - electron energy measurement through dynamic clustering (collection of bremsstrahlung radiation along Φ)
 - electron-jet separation through cluster shape in η
 - good agreement between data and MC up to the energies reached so far

- high granular tracking system allows:
 - electron vertex determination
 - estimation of fraction of energy lost by bremsstrahlung in tracker: f_{brem}
 - precise track-ECAL matching

 900 GeV / 2.36 TeV / 7 TeV data commissioning: from low p_T electrons (mainly from γ conversions) to the prompt high p_T ones characteristic of W's and Z's

muon reconstruction

Physics at LHC, 10/06/10

- Three different subsystems to reveal muons: Drift Tubes (|η|<1.2), Cathode Strip Chambers (0.9<|η|<2.4) and Resistive Plate Chambers (|η|<1.6)</p>
- two complementary approaches: "standalone" (outside-in) and "tracker" (inside-out)

- goals momentum measurement:
 - 1% for p_T≈100 GeV, 10% for p_T≈1 TeV
 - good alignment already after the cosmic rays run:
 - resolution($\phi_{\text{Drift Tubes}}$) \approx 200 µm (close to expected CMS precision)

E. Di Marco

- \blacktriangleright v momentum in W \rightarrow lv estimated from energy unbalance in the transverse plane

 - necessary for M_W measurement (definition of $m_T(W)$)
- **b** background rejection improves with $alpha_T$ resolution
 - three methods exploit increasing number of informations:
 - pure calorimetric, track-corrected, full particle flow

see Daniele Benedetti's talk on Particle Flow in CMS

E. Di Marco

detector (HCAL+ECAL noises) and beam background noise cleaning applied successfully

CMS "detectors" at work: looking for candidates

W→ev selection

- Single photon trigger used on first 7 TeV data
- W→ev:

94 W candidates observed

E. Di Marco

37 signal+background events with m_T >50 GeV (clean signal region)

W→ev

Single non isolated muon trigger used

● W→µν:

- exactly one muon (p_T>25 GeV, |η|<2.1) with track quality criteria
- small transverse impact parameter with beam spot required to reject cosmic muons
- muon isolation criteria applied
- m_T(W)>50 GeV to define the signal region
- On 7 TeV data: L_{int}=16 nb⁻¹:
 - 70 events selected

E. Di Marco

● 57 signal+background events with m_T>50 GeV (clean signal region)

W→ev candidate

CMS W→ev candidate in 7 TeV data

$W \rightarrow \mu v$ candidate

• CMS $W \rightarrow \mu \nu$ candidate in 7 TeV data

- Single electron and muon triggers
- Z→e⁺e⁻:
 - two electrons with $p_T>20$ GeV and $|\eta|<2.5$
 - loose electron ID and isolation (keep efficiency high)
 - 70 < m_{ee} < 110 GeV/c²
 - QCD ≈ 0.35% of Z, EWK background estimated from MC
- Z→µ+µ-:

- two opposite sign muons with p_T >15 GeV, $|\eta|$ <2.0
- loose muon isolation in tracker
- expected cross section uncertainty (statistical) ≈ 2–3% with 5 pb⁻¹

$Z \rightarrow e^+e^-$ candidate

CMS $Z \rightarrow e^+e^-$ candidate in 7 TeV data

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c^2

endcap electron

$Z \rightarrow \mu^+\mu^-$ candidate

• CMS $Z \rightarrow \mu^+ \mu^-$ candidate in 7 TeV data

The road to discovery with W and Z... + jets!

W,Z+jets motivations

W+jets have large cross section at LHC: dominant background for SM measurements: eg. ttbar, Higgs:

- W,Z+jets as a probe for new physics: new heavy particles with EWK couplings produce W/Z with jets from ISR or FSR
- "Berends Giele" scaling:
 - $\sigma(Z+(n+1)) = \sigma(Z+n) = \alpha_s$ (depends on jet definition)
 - if not, new physics?

E. Di Marco

```
F.A. Berends et al.:
Nucl. Phys. B357 (1991)32-64
```


Z+jets expectations

- Z selection similar to inclusive analysis, but as loose as possible
- for jet counting, jets are reconstructed with anti-kT algorithm ($\Delta R=0.5$):
 - using calorimetric towers, tracks, or full particle flow objects
 - **probing different phase spaces (p**_T, η of jet): ex., track jets with p_T>15 GeV/c, $|\eta|<2.4$
- ${\tilde{I}}$ signal yield extracted with likelihood fits to m_{ll} for each multiplicity

Z+jets candidate

E. Di Marco

INFN

W+jets expectations

- First measurements can be:
 - dN_W/dn_{jet} as for the Z+jets

• the double ratio, expected to be 1:
$$R = \frac{dN(W + \text{jets})/dn_j}{dN(Z + \text{jets})/dn_j}$$

- W+3,4 jets the most important, but polluted by ttbar events
 - b-tagged jets veto, event shape variables to discriminate W+jets / ttbar events
- Iikelihood fit to $m_T(W)$ to extract the signal yield on data

E. Di Marco

Conclusions

- Observing W and Z bosons at CMS is the starting point for the LHC search program
 - they constitute a measurement per se (EWK constraints)
 - They allow the commissioning of high p_T physics: with o(10 nb⁻¹) CMS already found the first clean W and Z candidates
 - signal and backgrounds scale well with simulations
- With upcoming LHC data at 7 TeV CMS program is:
 - give a first estimate of W and Z cross sections
 - measure integrated W asymmetries
 - measure W+1,2 jets or measure N(W+1-jet)/N(W+0-jet)

... and then start looking for the unknowns ...

backup

- Jet clustering is applied to different detector inputs:
 - calorimetric towers (**`Calo-Jets**");
 - calorimeter jets with η, p_T corrections from the high granular and precise tracking system ("Jets-Plus-Tracks");
 - Clustering of Particle Flow objects (charged hadrons, neutral hadrons, photons): "PF-Jets"
- jet energy corrections can be applied to account for non-uniform and non-linear response of calorimeters to jets
 CMS prelimit
- jet counting to test "Berends-Giele" scaling in W,Z+jets can be done on both corrected and un-corrected jets

 first commissioning with 0.9, 2.36 TeV data of di-jets events promising for all three reconstructions

