Observation of W and Z Boson Production at 7 TeV with the ATLAS Experiment

Joao Guimaraes da Costa (On behalf of the ATLAS Collaboration)

Harvard University

Physics at LHC

June 10, 2010

The rediscovery of the W/Z Bosons

@ 7 TeV

 $\sigma_{\mathbf{W} \to \ell \nu}^{\mathbf{NNLO}} = \mathbf{10.45} \text{ nb}$

 $\sigma^{\mathbf{NNLO}}_{\mathbf{Z}/\gamma^* \rightarrow \ell \ell} = \mathbf{0.989} \text{ nb}$

FEWZ, MSTW2008 ~3% uncertainty

Goals:

- Detector commissioning and explore its capabilities
- Establish analysis for $\sigma_{W,Z}$ measurement at 7 TeV
 - Stringent test of QCD
 - Constraints parton distribution functions
- First step towards possible discoveries in high-p_T physics

$$pp \longrightarrow W + X$$

$$\models e \nu$$

$$\downarrow \nu$$

Data Sample

Data Collected from March to May 2010

	ſ	Channel		Luminosity uncertainty: 20%	
		Electron	Muon	Stable beams	
	W	6.7 nb⁻¹	6.4 nb ⁻¹	Good quality data	
	Z	6.7 nb⁻¹	Z →µµ analysis 7.9 nb ⁻¹ does not require calorimeters		Number
Leve Hardv trigg	el 1 Electron EM cal		orimeter (threshold ~ 2 GeV), η < 2.5		1.2 x 10^7
	ers Mu	on Open road - no p_T requirement, $ \eta < 2.4$			2.8 x 10 ⁵

Monte carlo samples:

- Pythia 6.4, MRST LO pdfs, GEANT 4
- Signal: corrected to NNLO cross section
- Background: measured in data or normalized to σ (details later)

Electron Preselection

- One PV with \geq 3 tracks
- At least one Loose Electron
 - Cluster- E_T > 20 GeV, $|\eta| < 2.47$
 - **Excluding region**
 - 1.37 < |η| < 1.52</p>

Loose Electron:

ID track matching an EM calo cluster Selected on shower shape on 2nd calo layer and energy leakage into hadronic calo ϵ =94%, Rejection factor = 1100

Good agreement with MC shapes MC cross section higher by ~2.2 Normalized to total data events

Muon Preselection

- One PV with \geq 3 tracks, $|Z_{PV}| < 15$ cm
- At least one combined muon
 - $P_T > 15$ GeV, $|\eta| < 2.4$
 - Muon Spectrometer P_T(MS) > 10 GeV
 - Reduces decays-in-flight
 - |P_T (MS) P_T (ID)| < 15 GeV</p>
 - Removes bad track matches
 - $|Z_{track} Z_{PV}| < 1 \text{ cm}$
 - Removes cosmic events

Good agreement with MC shapes MC cross section higher by ~1.9 Normalized to total data events

Missing Transverse Energy

Conversions

Hadrons

 $W \rightarrow \tau v$

70

= 6.4 nb

80

E^{miss} [GeV]

70

QCD

80

90

E^{miss}_T [GeV]

W Candidates in the Electron Channel

Requirement	Number of events
Triggered	1.2 x 10 ⁷
Preselection	2.2 x 10 ³
Tight electron	77
E_T^{miss} > 25 GeV	17
M_T > 40 GeV	17

Tight Electron: TRT high-threshold hits Cluster E/p Conversion veto, detailed shower shapes, impact parameter requirement ϵ =72%, Rejection factor = 92000

QCD background scaled to measurement in data

$W \rightarrow e \nu$ Candidate Event

Run Number: 152409, Event Number: 5966801

Date: 2010-04-05 06:54:50 CEST

W→ev candidate in 7 TeV collisions

 $p_{T}(e+) = 34 \text{ GeV}$ $\eta(e+) = -0.42$ $E_{T}^{miss} = 26 \text{ GeV}$ $M_{\tau} = 57 \text{ GeV}$

W Candidates in the Muon Channel

Requirement	Number of events
Triggered	2.8 x 10 ⁵
Preselection	534
P _T > 20 GeV	166
Track Isolation	76
E ^{T^{miss} > 25 GeV}	42
M _T > 40 GeV	40

Track Isolation: $\sum p_T$ (cone = 0.4)/ $p_T^{\mu} < 0.2$ 99% efficient 87% bkg rejection

QCD background scaled to measurement in data

W/Z Observation

JHC 2007

Joao

Guimaraes

9

Transverse Momentum of the W boson

- Small excess of high-p_T W bosons in muon channel
 - 8 events with jets
 - W+ jets events
 - QCD background

W/Z Observation

- High-p_T W candidates in muon channel
 - All muons are well isolated and consistent with the W boson hypothesis
- All final events inspected:
 - Lepton reconstruction quality
 - Event topology
 - Timing tests in TRT, Calorimeters and MDT ==> inconsistent with cosmics

$W \rightarrow \mu \nu$ Candidate Event with 3 Jets

Background Estimation: Electron Channel

QCD background

Heavy-quark decays, conversions and hadrons faking electrons

Data driven estimation:

Calorimeter Isolation $\sum E (cone = 0.3) / E_T^e$

Templates from MC

Binned maximum likelihood fit

Little statistics

Use medium electrons

Scale to expectations for tight electrons (4.9 ± 1.0)

 $N_{QCD} = 2.0 \pm 1.2(stat) \pm 0.4$ (syst)

Other backgrounds $W \rightarrow \tau \nu$: 0.4 events $Z \rightarrow ee$ small

Background Estimation: Muon Channel

Summary

Systematic Uncertainties		$W \rightarrow e \nu$	$W \rightarrow \mu \nu$	e' Data/MC comparisons	
Lepton Identification		5%	10%	μ : Cosmic ray data	
Trigger		small	7%	e: εtrigaer ~ 100%	
Momentum Resolution			5%	μ: Etrigger ~ 85% in data	
Er ^{miss}		5%	570	e: Choice of Et ^{miss}	
Theoretical σ + pdf		4%	4%	μ: Cosmic ray data	
555555555	$W ightarrow e \nu$			$W \rightarrow \mu \nu$	
	V	$V \rightarrow e \nu$		$W \rightarrow \mu \nu$	
Signal	И 20.7 ± 1.7	ν → e ν (syst) ± 4.1	(lumi)	$W \rightarrow \mu \nu$ 25.9 ± 3.6 (syst) ± 5.2 (lumi)	
Signal Bkg	V 20.7 ± 1.7 2.4 ± 1.2 (stat) :	 ✓ <i>e ν</i> (syst) ± 4.1 ± 0.4 (syst) ± 	(lumi) = 0.5 (lumi)	$W \rightarrow \mu \nu$ 25.9 ± 3.6 (syst) ± 5.2 (lumi) 2.8 ± 0.5 (stat) ± 0.8 (syst) ± 0.6 (lumi)	
Signal Bkg Expected	V 20.7 ± 1.7 2.4 ± 1.2 (stat) : 23.1 ± 1.2 (stat)	 ✓ → e ν (syst) ± 4.1 (syst) ± 0.4 (syst) ± 1.7 (syst) ± 	(lumi) = 0.5 (lumi) ± 4.6 (lumi)	$W \rightarrow \mu \nu$ 25.9 ± 3.6 (syst) ± 5.2 (lumi) 2.8 ± 0.5 (stat) ± 0.8 (syst) ± 0.6 (lumi) 28.7 ± 0.5 (stat) ± 3.9 (syst) ± 5.7 (lumi)	
Signal Bkg Expected Observed	V 20.7 ± 1.7 2.4 ± 1.2 (stat) : 23.1 ± 1.2 (stat)	 V → e V (syst) ± 4.1 (syst) ± ± 0.4 (syst) ± ± 1.7 (syst) ± 	(lumi) = 0.5 (lumi) ± 4.6 (lumi)	$W \rightarrow \mu \nu$ 25.9 ± 3.6 (syst) ± 5.2 (lumi) 2.8 ± 0.5 (stat) ± 0.8 (syst) ± 0.6 (lumi) 28.7 ± 0.5 (stat) ± 3.9 (syst) ± 5.7 (lumi) 40	

Observation of the Z boson

Observation of the Z Boson

Executed full analysis

	Selection	Z →ee	$Z \rightarrow \mu \mu$		
Looser Lep	ton Identification	Medium electron	P _T (2) > 15 GeV, η < 2.5		
Opposite L	epton Charge				
		80 GeV < n	n∥ < 100 GeV		
	Z → ee		$Z \rightarrow \mu \mu$		
Signal	1.6 ± 0.1 (syst) ± 0.	3 (lumi) 3.2 ±	3.2 ± 0.7 (syst) ± 0.6 (lumi)		
Bkg	0.01	(2.1 ± 0.	(2.1 ± 0.8 (syst) ± 0.4 (lumi)) x 10 ⁻⁴		
Observed			22222222222222222222222222222222222222		
Mass reconstructed	91.4 GeV		87.6 GeV 80.2 GeV		
	Systematic uncertainties similar to the W analysis but taking				

into account correlations between leptons

The First Z Boson in the Electron Channel

The First Z Boson in the Muon Channel

Date: 2010-05-10 02:07:22 CEST

 $p_T(\mu^-) = 27 \text{ GeV} \quad \eta(\mu^-) = 0.7$ $p_T(\mu^+) = 45 \text{ GeV} \quad \eta(\mu^+) = 2.2$

 $M_{\mu\mu} = 87 \text{ GeV}$

Z+μμ candidate in 7 TeV collisions

Conclusions

■ $W \rightarrow \mu \nu$ and $W \rightarrow e \nu$ have been observed in ATLAS Observed 57 events Expected 51.8 events

 Individual results are consistent with Standard Model expectations

- Small excess of events is observed in the muon channel
- Data has been scrutinized and so far there is no evidence of problems
- Z boson events have been observed in both channels

Observed3 eventsExpected4.8 events

Work well advanced towards cross section measurements

We eagerly await the addition of more data

ATLAS T Detectors (ID)

Electron reconstruction

Coverage:

- LAr electromagnetic calorimeter:
 - Barrel: |ŋ| < 1.475
 - Endcap: $1.375 < |\eta| < 3.2$
- Hadronic calorimeter
 - Tile calorimeter: $|\eta| < 1.7$
 - •LAr endcap calorimeter: $1.5 < |\eta| < 3.2$

= Electrons =

Loose:

• EM shower in second layer of calorimeter

Medium:

- Include first layer of calorimeter
- Cluster-track matching

Tight:

- Includes TRT information
- Includes pixels
- Further removes contamination from conversion and hadrons

The Muon Spectrometer

Transverse Mass for Electron Candidates

Transverse Mass for Muon Candidates

Isolation variables

- Outliers in muon channel checked for a diverse set of problems
 - All muons are well isolated and consistent with the W boson hypothesis
 - Possibility of extra QCD background is not ruled out
- All events passed timing tests (in TRT, Calorimeters and MDT) showing they are inconsistent with being from cosmic

Missing Energy Prior to Transverse Mass Cut

$W \rightarrow e \nu$ Candidate Event

$W \rightarrow \mu \nu$ Candidate Event with Di-jets

W->µv candidate in 7 TeV collisions

run#: 155112, event#:44298790 $W_{MT} = 90 \text{ GeV}, pT = 56 \text{ GeV}$ MET = 36 GeV-Lepton: $pT(\mu+) = 69 \text{ GeV}, \eta = -1.19, \phi = -2.5$ -Jets: jet 0 pt = 90 GeV, $\eta = -0.87$ jet 1 pt = 36 GeV, $\eta = -1.09$ sumEt = 170 GeV

W/Z Observation --Physics at LHC 2007 Joao Guimaraes 33

Z-> $\mu\mu$ candidate in 7 TeV collisions run#: 1551127 event#: 79831531 Z: Minv = 80 GeV, Pt= 26 GeV Pt(μ +) = 28 GeV, η = 0.69 Pt(μ -) = 21 GeV, η = 1.55

