Thursday, June 10th 2010 – Physics at LHC 2010 Antonin MAIRE - PhD student in Strasbourg

Strangeness production in ALICE

 ${
m K^0s}
ightarrow \pi^+ + \pi^-$

(via topological reconstruction : ϕ (1020) / K⁰s, Λ^0 / Ξ^{\pm} , Ω^{\pm})

PHYSICS

AT LHC

for the ALICE collaboration

Outline

I. Introduction : strangeness, p-p and ALICE

Part A - 900-GeV data analysis

- II. $\phi(1020)$ resonance
- III. $K^0s + \Lambda^0$, $\overline{\Lambda}^0 \longrightarrow V0$ topology
- IV. $\Xi^- + \overline{\Xi}^+$ \blacktriangleright Cascade topology
- V. Summary

Part B - 7-TeV data analysis

VI. K⁰s, Λ^{0} , $\overline{\Lambda}^{0}$, $\Sigma^{*}(1385)$, Ξ^{-} , $\overline{\Xi}^{+}$, Ω^{-} , $\overline{\Omega}^{+}$ performance plots

VII. Conclusions and Prospects

Thursday, June 10st 2010 Antonin.MAIRE@cern.ch – IPHC Strasbourg / Physics at LHC 2010

I.1 – Introduction : p-p, strangeness

• Physical incentives :

Strangeness in p-p = benchmark for heavy-ion physics ... But, interest in itself = strangeness production mechanisms : **pQCD** (*high pt*)

Vs

soft interactions (*low pt*)

- \rightarrow understand the *soft part* of the event + its interplay with the *hard part*,
- \rightarrow constrain the phenomenology (Multi-Parton Interaction ? Thermal-like ?)

of QCD-inspired models (Pythia, EPOS, Phojet ...)

• Measurement status : (p+p) or (p+p) measurements at high energies :

√s	Experiment(s)	Collisions	Particles	Ref./Link
200 GeV	(UA5) + STAR	(p+p) + p+p	K ⁰ s, Λ^0 , Ξ^{\pm} , Ω^{\pm}	STAR paper
630 GeV	UA1 + CDF	p+p	K ⁰ s, Λ^0	UA1 paper
900 GeV	UA5	p+p	K^0 s, Λ^0 , Ξ^-	UA5 paper
1,8 TeV	CDF	p+p	$\mathrm{K}^{0}\mathrm{s}$, Λ^{0}	CDF paper

 \rightarrow LHC : 900 GeV + 7 TeV ?

I.2 – Introduction : strangeness, ALICE

- Experimental point of view :
 - **A.** Strangeness via *PID-only* = K^{\pm} / See **A.Dainese** 1st physics results (link)
 - B. Strangeness via topology = neutral strange + multi-strange ... (NB : identif[°] from low pt (~0.2 MeV/c) to high pt (~10 GeV/c)

• ALICE point of view :

2. < very good PID capabilities
 (ITS, TPC, TRD, TOF, HMPID)</pre>

I.3 – Introduction : ALICE sub-detectors

• Sub-detectors needed :

1. Inner Tracking System 2. Time Projection Chamber \rightarrow for tracking + PID (+ 3. Time Of Flight \rightarrow for PID)

• Data :

→ December 2009 p+p, 900 GeV ~ 250 k evts

→ March 2010 < p+p, 7 TeV > 100 Mevts ...

II. – 900 GeV : φ(1020)

II.1 – $\phi(1020)$: reconstruction

Pass4 - Run 09000104892 / Chunk 020.130 / Event 288

III.1 – K^0 s, Λ^0 , Λ^0 : reconstruction

Decay channel: $K^{0}s(ds) \rightarrow \pi^{+} + \pi^{-}(c\tau = 2,68 \text{ cm})$ $\Lambda^0(uds) \rightarrow p^+ + \pi^- (c\tau = 7,89 \text{ cm})$

+ protons identified via TPC PID

V0.b

DCA between V0

daughters

Vo Vtx

DCA V0 Neg. dghter

V0.a

to Prim. Vtx

Thursday, June 10st 2010 Antonin.MAIRE@cern.ch – IPHC Strasbourg / Physics at LHC 2010 9/18

IV. – 900 GeV : Cascades, Ξ^{\pm}

Pass4 - Run 09000104892 / Chunk 020.30 / Event 108

IV.1 – Ξ^{\pm} : reconstruction

• Decay channel : $\Xi^{-}(dss) \rightarrow \Lambda^{0}(uds) + \pi^{-} \rightarrow p + \pi^{-} + \pi^{-} (c\tau = 4,91 \text{ cm})$ $\overline{\Xi}^{+}(\overline{dss}) \rightarrow \overline{\Lambda}^{0}(\overline{uds}) + \pi^{+} \rightarrow \overline{p} + \pi^{+} + \pi^{+} (c\tau = 4,91 \text{ cm})$

V. – 900 GeV : Summary plots

V.1 – Summary : signal extraction principle

V.2 – Summary : raw counts + comparison

Pass1 - Run 10000115322 / Chunk 029.150 / Event 2428

VI.1 – **VO** : K^0 s, Λ^0 , $\overline{\Lambda}^0$

Thursday, June 10st 2010

Antonin.MAIRE@cern.ch – IPHC Strasbourg / Physics at LHC 2010

VI.2 – Cascades : $\Sigma^*(1385)$, Ξ^{\pm} , Ω^{\pm}

Counts per 2.0 MeV/c²

50

40

30

20

2010 data

April 2010

p+p at $\sqrt{S} = 7$ TeV

ALICE Performance

ALICE data, p-p at 7 TeV (sel. runs 114783 - 115401 / GRID pass1) - 5.71 Mevents

 Ω^{-} candidates

Gaussian+Pol1 Fit :

 χ^2 /ndf = 43.71/45

 $\sigma_{\rm M} = 2.7 \pm 0.3 \; {\rm MeV/c^2}$

 $(M_{pda} = 1.6725 \text{ GeV/c}^2)$

 $M_{o} = 1.6722 \pm 0.0003 \text{ GeV/c}^2$

Decay channel :

 $\frac{\Omega^{-}(\text{sss}) \rightarrow \Lambda^{0}(\text{uds}) + \text{K}^{-} \rightarrow p + \pi^{-} + \text{K}^{-}(\text{c}\tau = 2,46 \text{ cm})}{\overline{\Omega}^{+}(\overline{\text{sss}}) \rightarrow \overline{\Lambda}^{0}(\overline{\text{uds}}) + \text{K}^{+} \rightarrow \overline{p} + \pi^{+} + \text{K}^{+}(\text{c}\tau = 2,46 \text{ cm})}$ e.g. $\Sigma^{*-}(\text{dds}) \rightarrow \Lambda^{0}(\text{uds}) + \pi^{-} \rightarrow p + \pi^{-} + \pi^{-}$

Thursday, June 10st 2010

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Physics at LHC 2010

Conclusions and Prospects

Conclusions:

- Goal : baseline for comparisons with MC models + benchmark for heavy-ion collisions at LHC
- ALICE detector : good capabilities to **identify strangeness** via topological reconstruction
- \rightarrow Measurements at 900 GeV + performances at 7 TeV, shown.

Prospects :

Extend the analyses to 7-TeV p+p data, where :

= more statistics available,

enabling more **differential analyses** (spectra = f(pt, y, Multiplicity, ...)