

Minimum bias physics results at LHCb

W.M.Bonivento INFN – Sezione di Cagliari - Italy On behalf of the LHCb Collaboration

Outline

- Some "re-discovery" plots of resonances
- Prompt K_s^0 production cross-section in 2009 data @vs=0.9TeV
 - ∫**ℒ**=6.8µb⁻¹
 - very advanced, close to finalize for publication
- Prompt anti Λ/Λ production ratio in 2010 data:
 - vs=0.9 TeV
 - ∫**ℒ**≈0.3nb⁻¹
 - √s=7 TeV
 - ∫**ℒ**≲1nb⁻¹
 - preliminary results

Setting the scale

the # of recorded minimum bias events needed to observe 100 events of the process X

The LHCb detector

•pseudo-rapidity coverage 1.9-4.9

•possibility to reverse field polarity to check for detector asymmetries •so far we have $\int \mathcal{L} \approx 14 nb^{-1}$ on tape

Walter M. Bonivento - INFN

LHCb detector and trigger

- Only first level hardware trigger used for this analysis
- trigger used for the analyses discussed in this talk:
 - minimum bias trigger based on CALO
- Beam-gas interactions were a substantial background in 2009
 →reduced by vertex region cuts (to ≈1%) and statistically subtracted

- In 2009 was kept at 15mm from nominal position
- In 2010 it was kept at 10mm
- For the 7 TeV runs the VELO was closed

Non strange mesons

Strange mesons

Strange hyperons

Physics motivation of K_s⁰ analysis

- Strangeness production very good to test fragmentation models since valence quarks are not strange
- Highest CM energy so far 1.96 TeV (but for ppbar) at Tevatron and 200 GeV at RHIC
- Models tuned for central rapidity and $p_T > 0.4 0.5 \text{ GeV/c}$
- LHCb covers the forward rapidity and can provide a measurement down to $p_T=0$

Event selection

We have performed two independent analyses

- 1) with LONG TRACKS
 - Make long tracks with VELO hits if possible
 - low statistics due to VELO open but good background rejection
 - Separation from combinatorial background based on $\nu_1 = \ln\left(\frac{IP_{d^+} \cdot IP_{d^-}}{IP_{V0} \cdot 1mm}\right)$

reconstructed z position of the decay vertex

1000

500

1500 2000 2500 z position of K, vertex [mm]

0.002

-500

- 2) with DOWNSTREAM tracks
 - no VELO hits used in the reconstruction
 - large statistics
 - Ks required to point to the z axis

impact parameter cut of the daughters

arbitrary scale

0.08

0.07

0.06

0.05

0.03

0.02

0.01

°C

ΙΝΓΝ

Event selection (2)

signal extraction used both sideband subtraction and double Gaussian fit

	# events in beam-beam interactions		
K ^o s long	1196		
K ^o s downstream	4864		

Efficiency corrections

Strategy: determine efficiencies in p_T , y bins from Monte Carlo Use data to cross check in certain areas of phase space

- Selection efficiency: determine ratio data/MC after a loose preselection
 - systematic uncertainty $\approx 4\%$
- Tracking efficiency:
 - MC corrected for hit finding inefficiency due to residual misalignment in data (10% effect)
 - Track efficiency measured on data splitting the track in segments: about 5% difference found in data w.r.t. MC, p_T dependent
 - systematic uncertainty ≈10% (dominant contribution after luminosity)
- Trigger efficiencies between 96.5% and 99%
 - systematic difference data-MC <1%

 Used a direct method based on beam currents from BeamCurrentTransformers bunch-by-bunch and reconstruction of beam transverse size (in b1-gas and b2-gas events) by the VELO

$$\mathcal{L} = f \sum_{i}^{N} \frac{n_{1i} n_{2i}}{4\pi \sigma^{x}_{i} \sigma^{y}_{i}}$$

- Need to take into account the crossing angle (2mrad) in xz plane due to LHCb B field
- Systematic on beam sizes evaluated comparing b1-gas, b2-gas and b1-b2 events
- Total systematic error ≈15% dominated by BCT current measurements

prompt $\sigma(K^0_S)$ results

Comparison to different PYTHIA tunings->data tend to be slightly harder ^{6/9/10} Walter M. Bonivento - INFN

Physics motivation of Abar/A analysis

- Study of baryon number transport
- Models tuned to lower energies; they diverge at LHC energies

http://home.fnal.gov/~skands/leshouches-plots/

Event selection

- analysis made with long tracks only
- no particle id. used: ∧ and anti∧ selected by the Armenteros-Podolansky variable
- combinatorial background reduced using the same variable $v_1^{}$ as in the ${\rm K^0}_{\rm S}$ analysis
- pointing of the Λ to the primary vertex required
- selected events:

	0.9 TeV field up data	0.9 TeV field down data	7 TeV field up data	7 TeV field down data
٨	4803	4421	20790	24815
anti∧	3629	3173	19115	22077

Invariant mass

Kinematic distributions of Λ 's

Feynman x of Λ's

very small x_F values

Systematic uncertainties

- In general all systematic contributions are at second order
 - e.g. variation of selection cuts
- p_T distributions were re-weighted to match the data distributions
 - systematic error contribution from this procedure≈0.02
- Material interactions:
 - difference between p and anti-p cross section with material ≈10% below 10GeV; reproduced also in our MC (but effect reduced by kinematic selection of Λ)
 - Material description accurate to ≈10%
 - cross section knowledge accurate to ≈10%
 - dominant systematic uncertainty ≈2%

Results for anti- Λ/Λ

Efficiency corrected ratios for "prompt" A

(=production vertex <10 μ m from PV->after cut still about 30% of the events come from $\Sigma^{(*)}$)

Perugia tunes do not include diffraction LHCb tune include diffraction (<% after selection cuts) Plots include both statistical and systematic error Field up and down results were averaged being consistent with each other

Comparison field up-down

3.5

4 У

Conclusion

- prompt K_{s}^{0} absolute production cross section at $\sqrt{s}=0.9$ TeV
 - p_T spectra tend to be "harder" than PYTHIA predictions
 - extended measurement range to low \boldsymbol{p}_{T} and new y range
- prompt anti Λ/Λ ratio at $\sqrt{s}=0.9$ TeV
 - tends to be lower than PYTHIA Perugia 0 tune and LHCb tune, lower with larger y
- prompt anti Λ/Λ ratio at $\sqrt{s=7}$ TeV
 - in fair agreement with PYTHIA LHCb tune and quite flat vs. y
- study in progress of anti-baryon/baryon ratio for other baryons (anti-p/p) and of meson/baryon ratio (K^0_S/Λ)

Backup slides

Efficiency corrections

- Trigger efficiency
 - Use TriggerIndependentofSignal (TIS)_and TriggerOnSignal (TOS) events to extract efficiencies from the data and compare with MC

