Observation of Energetic Jets in ppCollisions at $\sqrt{s} = 7$ TeV using the ATLAS Experiment at the LHC

Eric Feng (University of Chicago)

on behalf of the ATLAS Collaboration

Physics at the LHC 2010 (DESY) 2010 June 7-12

Outline

- Introduction
- Data sample & event selection
- Dijet and multi-jet event displays
- Inclusive jet and dijet kinematic distributions
- Jet internal structure and particle flow
- Conclusions

Introduction

- We report here the observation of energetic jet production in pp collisions at a center-of-mass energy of 7 TeV using 1 nb⁻¹ of data taken with the ATLAS detector
 - Documented in conference note ATLAS-CONF-2010-043: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFN OTES/ATLAS-CONF-2010-043
- Calorimeter response of single isolated hadrons described earlier (P.O. DeViveiros)
- Jet reconstruction and calibration also detailed earlier (R. Seuster)
- This talk focuses on the kinematics and internal structure of the jets produced
- Early searches using these jets will be discussed afterwards (V. Lendermann)

Data sample and event selection

Data sample

- Data sample studied encompasses approximately 1 $nb^{\mbox{\tiny -1}}$ of data collected through April 22
 - 18.1 nb⁻¹ delivered by LHC to date
 - Peak instantaneous luminosity ~ 2.1 x 10^{29} cm⁻² s⁻¹

Trigger

- MBTS (Minimum Bias Trigger Scintillator) inclusive trigger
 - Require at least one scintillator fired from either η hemisphere: 2.09 < $|\eta|$ < 3.84
 - No significant bias introduced to the inclusive jet sample

Vertex requirement

- Require at least one vertex reconstructed with |z| < 10cm (luminous region is ~5cm)
 - Suppresses contamination from non-collision backgrounds such as beam halo and beam gas
- Negligible impact from pileup in data sample studied
 - Fraction of events with more than one reconstructed vertex is ${\sim}0.2~\%$

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Jet reconstruction & calibration

- Jets reconstructed from calorimeter clusters using Anti- $k_{_T}$ jet algorithm with clustering parameter R=0.6
 - Jet transverse momentum corrected on average from the "electromagnetic scale" back to the hadron level using an MC-based calibration as a function of jet p_T and y
 - Electromagnetic scale is the calibrated scale for energy deposited by electrons & photons in the calorimeter
 - Non-compensation for hadrons due to nuclear interactions
 - Further details on reconstruction and calibration of clusters and jets in earlier talks by P.O. DeViveiros and R. Seuster
- Jets selected with calibrated $p_{_{\rm T}}$ > 30 GeV within rapidity acceptance $|y|{<}2.8$

Jet cleaning

- Events with at least one "bad" jet with $p_T > 10$ GeV at electromagnetic scale anywhere in detector are removed
- "Bad" jet definition is based on cuts designed to remove:

- Noisy cells in the hadronic endcap calorimeter
- Coherent noise in the electromagnetic calorimeter
- Large out-of-time energy depositions, e.g. from cosmic ray muons
- Already discussed in earlier talk on missing E_T performance (A. Yurkewicz)
- Further details in backup slides and in conference note ATLAS-CONF-2010-038: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-038

Dijet and multi-jet event displays

Highest p_{T} dijet event

Example of 4-jet event

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Inclusive jet and dijet kinematic distributions

Comparison of data vs. Monte Carlo

- Pythia dijet Monte Carlo (LO matrix element + parton shower) used for theoretical model prediction
- All jet kinematic distributions normalized to unity
 - Normalization contains no information comparisons only sensitive to shape differences
 - Jet cross-sections will be reported later this summer
- Data distributions compared to Monte Carlo at reconstruction level (not unfolded to particle level)
- Only statistical uncertainties shown
 - No attempt to show systematic uncertainties from jet energy scale or other sources
 - Absolute JES uncertainty is O(10%) for |y|<2.8, which would introduce a large error band on the plots

Inclusive jet multiplicity

- Integral distribution of number of jets
 - Data decreases with increasing jet multiplicity
 - Events with up to 6 jets in the final state are observed
- Data and Monte Carlo agree well
 - Good performance by LO parton shower Monte Carlo

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Inclusive jet p_T spectrum and rapidity

- Observed $p_{_{\rm T}}$ spectrum falls steeply with increasing jet $p_{_{\rm T}}$
 - Jets with transverse momentum up to 500 GeV are observed
 - Monte Carlo follows the shape reasonably well
- Rapidity distribution is also described by the Monte Carlo
 - Some small deficiencies near y=0 and y=-2.1 (under investigation)

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Dijet mass and angular separation

- Invariant mass of two leading jets is observed up to 900 GeV
 - Limited phase space at low dijet mass from jet $\boldsymbol{p}_{_{T}}$ and \boldsymbol{y} thresholds
- Azimuthal separation $\Delta\phi$ indicates predominant back-to-back dijet final state
- Monte Carlo describes reasonably the shape of both distributions
 - Underestimates data at large $\Delta \phi$

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Jet internal structure and particle flow

Jet shapes: Method

• Jet shapes in inclusive jet production:

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N^{jet}} \sum_{\text{jets}} \frac{p_T(r - \Delta r/2, r + \Delta r/2)}{p_T(0, R)}, \ 0 \le r \le R$$

is the average *fraction* of jet transverse momentum within annulus of inner radius (r - $\Delta r/2$) and outer radius (r + $\Delta r/2$)

- Proportional to transverse momentum density inside the jet
- Relatively insensitive to the jet energy scale because jet p_T normalized away
- Here $p_{_{\rm T}}$ is computed as the scalar sum of transverse momenta of a jet's constituent clusters that lie within the annulus
 - Uses calorimeter clusters

Jet shapes: Data distributions

- Density of transverse momentum peaks at low r with most of jet p_T within r<0.3, indicating collimated flows of particles around jet axis
- Shifts to lower r for higher p_T jets, indicating they are more collimated
- Monte Carlo describes data reasonably well, producing slightly narrower jets than data

2010 June 10

Charged particle flow: Method

• Charged particle flow in inclusive dijet events:

$$<\frac{d^2 p_T}{|d\phi|dy}>_{jets}=\frac{1}{2R|\Delta\phi|}\frac{1}{N^{jet}}\sum_{jets}p_T(|\phi-\Delta\phi/2|,|\phi+\Delta\phi/2|),\text{with }0\le|\phi|\le\pi$$

is the average transverse momentum as a function of the azimuthal distance from the jet axis and rapidity separation between the two leading jets

- Here $p_{_T}$ is computed as the scalar sum of the transverse momenta of tracks at a given angle ϕ with respect to jet axis

- Only tracks within rapidity range occupied by jet are used
- Jet required to be within |y| < 1.9 to ensure that jet is fully within tracker acceptance |y| < 2.5
- Track-based method is useful to confirm results from calorimeter-based jet shapes

Charged particle flow: Data distributions

- For $|\Delta y^{ij}| < 0.6$, two collimated flows of charged particles (dijets) observed at $|\phi|=0$ and $|\phi|=\pi$
- For $|\Delta y^{ij}| > 1.2$, jet structure observed at low $|\phi|$ followed by plateau of remaining hadronic activity as $|\phi|$ increases
- Monte Carlo provides reasonable description of data, but slightly underestimates hadronic activity away from the jet direction (see backup)

2010 June 10

Conclusions

- We have reported the observation of jet production in pp collisions at 7 TeV using 1 nb⁻¹ data collected by the ATLAS detector
- Jets with p_T up to 500 GeV and dijet invariant mass up to 900 GeV have been observed using this data sample
- Shapes of inclusive jet and dijet kinematic distributions are reasonably described by Pythia dijet Monte Carlo
- Jet internal structure studied through jet shapes and charged particle flow
 - Confirms the presence of collimated flows of particles in the final state
- Measurement of jet cross-sections will be reported later this summer using more integrated luminosity from the LHC

ADDITIONAL MATERIAL

ATLAS Detector

2010 June 10

ATLAS Calorimeter

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

ATLAS Tracker

Jet cleaning cuts

- Detailed description in conference note ATLAS-CONF-2010-038: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-038
- Identify "bad" jets as follows:
 - Noisy cells in the hadronic endcap calorimeter: $n_{_{90}} <= 5$ and $f_{_{H\!E\!C}} > 0.8$
 - Coherent noise in the electromagnetic calorimeter: $|f_{quality}| > 0.8$ and $f_{EM} > 0.95$
 - Large out-of-time energy depositions, e.g. from cosmic ray muons: $|t_{iet}| > 50 \text{ ns}$
- Definitions of n_{g0} , $f_{H\!E\!C}$, $f_{quality}$, $f_{E\!M}$, and t_{jet} are on following slides

Cleaning cuts: $n_{_{90}}$ and HEC fraction

- $n_{_{90}}$ (left) = Number of energy-ordered cells accounting for at least 90% of jet energy
- f_{HEC} (right) = Fraction of jet energy in the Hadronic Endcap Calorimeter
 - Both shown after application of the jet timing and electromagnetic coherent noise cuts

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Cleaning cuts: Jet quality and EM fraction

- $f_{quality}$ (left) = Jet quality fraction
- f_{EM} (right) = fraction of jet energy in the electromagnetic calorimeter
 - Both shown after application of the single cell and jet timing cuts
- Monte Carlo distribution for $f_{auality}$

is zero by construction so not shown

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Cleaning cuts: Jet timing

- t_{iet} = Jet timing as energy weighed times of cells
 - After application of single cell and electromagnetic coherent noise cuts
- Corresponding Monte Carlo distribution is peaked at zero with no discernible width so not shown

E. Feng (U. of Chicago) - Observation of Jet Production at 7 TeV

Pythia tune & underlying event

- Charged particle flow indicates that hadronic activity away from the jet axis is slightly underestimated by Monte Carlo
- Studies of the sum p_T of tracks transverse to the leading track shows that the Monte Carlo tunes underestimate the underlying event:
 - Conference note: ATLAS-CONF-2010-029 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2010-029/

