Flavour Theory and the LHC Era

Andrzej J. Buras (Technical University Munich, TUM-IAS)

> DESY, Jun 11th, 2010 Physics at LHC 2010

Main Message of this Talk

4 DESYBuras0610

Basic Questions in Flavour Physics

New Flavour violating CPV phases?

Flavour Conserving CPV phases? Non-MFV Interactions?

Right-Handed Charged Currents? Scalars H⁰, H[±] and related FCNC's?

New Fermions? New Gauge Bosons?

How to explain dynamically 22 free Parameters in the Flavour Sector ?

CKM Parameters from Tree-Level Decays (subject to very small NP Pollution)

$$|\mathbf{V}_{us}| = \mathbf{s}_{12} = \mathbf{0.2254 \pm 0.0008}$$

 $|\mathbf{V}_{cb}| = \mathbf{s}_{23} = (41.2 \pm 1.1) \cdot 10^{-3}$

$$|\mathbf{V}_{ub}| = \mathbf{s}_{13} = (3.9 \pm 0.4) \cdot 10^{-3}$$

 $\delta_{CKM} = \gamma_{UT} = (75 \pm 15)^{\circ}$

(-phase of $V_{_{ub}}$)

$$\frac{(\sin 2\beta)_{\psi K_s}}{f} = 0.672 \pm 0.023$$

(-phase of V_{td})

Phase of
$$V_{ts}$$
: \approx - (1.2±0.1)°

but could be subject to NP pollution

 $\beta = (21.1 \pm 0.9)^{\circ}$

Hierarchical Structure of the CKM Matrix

$$\begin{pmatrix} 0.97 & s_{12} & s_{13}e^{-i\gamma} \\ -s_{12} & 0.97 & s_{23} \\ s_{12}s_{23}-s_{13}e^{i\gamma} & -s_{23} & 1 \end{pmatrix}$$

$$S_{13} << S_{23} << S_{12}$$

(4·10⁻³) (4·10⁻²) (0.2)

 $A_{CP}(B_d \rightarrow \psi K_s) \approx 0(1)$ $S_{\psi K_s} \approx \frac{2}{3}$

 $A_{CP}(B_s \rightarrow \psi \phi) \approx 0(10^{-2}) S_{\psi \phi} \approx \frac{1}{25}$

GIM Structure of FCNC's

Large *CP* effects in B_d Small *CP* effects in B_s Tiny *CP* effects in K_L

(tiny v masses)

$$\varepsilon \approx 0(10^{-3}) \quad \varepsilon' \approx 0(10^{-6})$$
$$\operatorname{Br}(K_{L} \to \pi^{0} \nu \overline{\nu}) \approx 0(10^{-11})$$

7

Impressive Success of the CKM Picture of Flavour Changing Interactions

EW-Symmetry Breaking has to be better understood.

Hierarchies in Fermion Masses and Mixing Angles have to be understood with the help of some New Physics (NP). This NP could have impact on Low Energies.

There is still a lot of room for NP contributions, in particular in rare decays of mesons and leptons, in *L*P flavour violating transitions and EDM's.

Matter-Antimatter Asymmetry → New CPV Phases needed.

Several tensions between the flavour data and the SM exist.

Superstars of 2010 – 2015 (Flavour Physics)

$$\begin{array}{c} \mathbf{S}_{\psi\phi} \\ (\mathbf{B}_{s} \rightarrow \phi\phi) \\ \hline \begin{pmatrix} \mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-} \\ (\mathbf{B}_{d} \rightarrow \mu^{+}\mu^{-}) \\ \hline \begin{pmatrix} \mathbf{B}_{d} \rightarrow \mu^{+}\mu^{-} \\ (\mathbf{K}_{L} \rightarrow \pi^{0}\nu\overline{\nu}) \\ \hline \begin{pmatrix} \mathbf{B}^{+} \rightarrow \tau^{+}\nu_{\tau} \\ \end{pmatrix} \\ \hline \begin{pmatrix} \mathbf{B}^{+} \rightarrow \tau^{+}\nu_{\tau} \\ (\mathbf{B}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-}) \\ \hline \begin{pmatrix} \mathbf{B}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-} \\ \hline \begin{pmatrix} \mathbf{C}^{'}/\epsilon \\ \tau \rightarrow \mu\gamma \\ \tau \rightarrow e\gamma \\ \mu \rightarrow 3e \\ \tau \rightarrow 3 \text{ leptons} \\ \end{array} \right)$$

Lattice 2010

10 DESYBuras0610

Strategy for the Next 29 Min

(hep-ph/0910.1032): "Flavour Theory : 2009"

Beyond the SM

Most popular BSM Directions

Master Formula for FCNC Amplitudes

Most popular BSM Directions

4G Model

The CKM4 matrix : New: s_{14} , s_{24} , s_{34} , δ_{14} , δ_{24} , m_t , m_b , 300-600 GeV

$c_{12}c_{13}c_{14}$	$c_{13}c_{14}s_{12}$	$c_{14}s_{13}e^{-i\delta_{13}}$	$s_{14}e^{-i\delta_{14}}$
$\frac{-c_{23}c_{24}s_{12} - c_{12}c_{24}s_{13}s_{23}e^{i\delta_{13}}}{-c_{12}c_{13}s_{14}s_{24}e^{i(\delta_{14}-\delta_{24})}}$	$c_{12}c_{23}c_{24} - c_{24}s_{12}s_{13}s_{23}e^{i\delta_{13}}$ $-c_{13}s_{12}s_{14}s_{24}e^{i(\delta_{14}-\delta_{24})}$	$\frac{c_{13}c_{24}s_{23}}{-s_{13}s_{14}s_{24}e^{-i(\delta_{13}+\delta_{24}-\delta_{14})}}$	$c_{14}s_{24}e^{-i\delta_{24}}$
$-c_{12}c_{23}c_{34}s_{13}e^{i\delta_{13}}+c_{34}s_{12}s_{23}$	$-c_{12}c_{34}s_{23} - c_{23}c_{34}s_{12}s_{13}e^{i\delta_{13}}$	c13c23c34	$c_{14}c_{24}s_{34}$
$-c_{12}c_{13}c_{24}s_{14}s_{34}e^{i\delta_{14}} + c_{23}s_{12}s_{24}s_{34}e^{i\delta_{24}}$	$\begin{array}{l}-c_{12}c_{23}s_{24}s_{34}e^{i\delta_{24}}\\-c_{13}c_{24}s_{12}s_{14}s_{34}e^{i\delta_{14}}\end{array}$	$\begin{array}{c} -c_{13}s_{23}s_{24}s_{34}e^{i\delta_{24}}\\ -c_{24}s_{13}s_{14}s_{34}e^{i(\delta_{14}-\delta_{13})}\end{array}$	
$+c_{12}s_{13}s_{23}s_{24}s_{34}e^{i(\delta_{13}+\delta_{24})}$	$+s_{12}s_{13}s_{23}s_{24}s_{34}e^{i(\delta_{13}+\delta_{24})}$		
$-c_{12}c_{13}c_{24}c_{34}s_{14}e^{i\delta_{14}} + c_{12}c_{23}s_{13}s_{34}e^{i\delta_{13}}$	$\begin{array}{r} -c_{12}c_{23}c_{34}s_{24}e^{i\delta_{24}}+c_{12}s_{23}s_{34}\\ \\ -c_{13}c_{24}c_{34}s_{12}s_{14}e^{i\delta_{14}}\end{array}$	$^{-c_{13}c_{23}s_{34}}_{-c_{13}c_{34}s_{23}s_{24}e^{i\delta_{24}}}$	$c_{14}c_{24}c_{34}$
$+c_{23}c_{34}s_{12}s_{24}e^{i\delta_{24}} - s_{12}s_{23}s_{34}$ $+c_{12}c_{34}s_{13}s_{23}s_{24}e^{i(\delta_{13}+\delta_{24})}$	$+c_{23}s_{12}s_{13}s_{34}e^{i\delta_{13}}$ + $c_{34}s_{12}s_{13}s_{23}s_{24}e^{i(\delta_{13}+\delta_{24})}$	$-c_{24}c_{34}s_{13}s_{14}e^{i(\delta_{14}-\delta_{13})}$	

Extensive New Interest in 4G

Very many papers: Hou; Hung; Chanowitz; Novikov et al. Kribs et al.

+

Hou, Nagashima, Soddu Soni, Alok, Giri, Mohanta, Nandi Herrera, Benovides, Ponce Bobrowski, Lenz, Riedl, Rohrwild Eilam, Melic, Trampetic AJB, Duling, Feldmann, Heidsieck, Promberger, Recksiegel Lacker, Menzel

New Interest in Higgs-mediated FCNC's

Guidice, Lebedev (08); Agashe, Contino (09), Azatov, Toharia, Zhu (09), AJB, Gori, Duling (09); Duling (09)

<u>Recent:</u> Botella, Branco, Rebelo (09); Joshipura, Kodrani (08, 10) Pich, Tuzon (09) Gupta, Wells (10)

May – June					
2010		Dobrescu, Fox, Mar	tin (1005.4238)		
(28	May)	AJB, Carlucci, Gori,	Isidori (1005.5310)	Neutral Higgs	
(29	May)	Aranda, Montano, Ramirez-Zavaleta, Toscano, Tututi (1005.5452)			
(31	May)	Braeuninger, Ibarra, Simonetto			
(2 J	lune)	Ligeti, Papucci, Perez, Zupan			
(2 J	lune)	Jung, Pich, Tuzón	Charged Higgs		

Few Messages on Higgs-mediated FCNC's **SUSY** 2HDM $\Delta M_{s} \qquad (\tan\beta)^{4}$ $B_{s,d} \rightarrow \mu^{+}\mu^{-} \qquad (\tan\beta)^{6}$ $\frac{(\tan\beta)^2}{(\tan\beta)^4} \cdot 1/M_{\rm H}^2$ Glashow 1977 Weinberg **MFV** more powerful than Natural Flavour Conservation (BCGI) Aligned 2HDM (Pich,Tuzón) **General 2HDM with MFV** and flavour blind phases + flavour blind phases (AJB, Carlucci, Gori, Isidori) Flavour-Blind phases can be included in MFV Mercoli, Smith (09) Kagan, Perez, Volansky, Zupan (09) — (could help to generate Paradisi, Straub (09) large CP-phase in B_s-mixing)

Waiting for Signals of New Physics in FCNC Processes

Three Strategies in Waiting for NP

Personal View In Flavour Physics less useful due to the presence of many operators (Buchmüller, Wyler: 1990) Exception: Minimal Flavour Violation Hypothesis

Top-Bottom Approach

Study of patterns of flavour violation in concreteNP models.Correlations between observables !

Models investigated by TUM-Teams (Last

(Last decade)

Search for New Physics in 2010's through Flavour Physics

Minimal Flavour Violation (MFV)

SM Yukawa Couplings are the only breaking sources of the SU(3)⁵ flavour symmetry of the low-energy effective theory

 $(\mathbf{Y}_t, \mathbf{Y}_b)$

D'Ambrosio, Guidice, Isidori, Strumia (02) Chivukula, Georgi (87)

CKM the only source of Flavour Violation but for $Y_t \approx Y_b$ new operators could enter

Operator structure of SM remains

VERY STRONG RELATIONS BETWEEN K and B Physics and generally ΔF=2 and ΔF=1 FCNC Processes

AJB, Gambino, Gorbahn, Jäger, Silvestrini (00) Ali, London

also beyond MFV Can SM describe simultaneously CP in K and B_d Systems?

Possible Solutions to $\varepsilon_{\rm K}$ - Anomaly

$$\left|\varepsilon_{K}\right|^{SM} \sim \kappa_{\varepsilon} \hat{B}_{K} \left|V_{cb}\right|^{2} \left(\frac{1}{2} \left|V_{cb}\right|^{2} R_{t}^{2} \sin 2\beta \eta_{tt}^{QCD} S_{0}(x_{t}) + F(\eta_{ct}^{QCD}, \eta_{cc}^{QCD}, m_{c}, ...)\right)\right)$$

Superstars of 2010 – 2015 (Flavour Physics)

Superstars enter the Scene

in the context of

(flavour models)

*) See however Faller, Fleischer, Mannel (08)

Patterns of Deviations from CPV – SM Predictions

$$\begin{split} \mathbf{K}^{0} - \overline{\mathbf{K}}^{0} & \left(\boldsymbol{\varepsilon}_{\mathbf{K}}\right) & \frac{\left|\boldsymbol{\varepsilon}_{\mathbf{K}}\right|_{\mathbf{SM}}}{\left|\boldsymbol{\varepsilon}_{\mathbf{K}}\right|_{\exp}} \approx 0.83 \pm 0.10 \\ \mathbf{B}_{d}^{0} - \overline{\mathbf{B}}_{d}^{0} & \left(\mathbf{S}_{\psi\mathbf{K}_{s}}\right) & \left(\mathbf{S}_{\psi\mathbf{K}_{s}}\right) \cong \frac{0.74 \pm 0.04 \quad (\mathbf{SM}) \quad (\mathbf{UTfit})}{0.672 \pm 0.022 \quad (\mathbf{exp})} \\ \mathbf{B}_{s}^{0} - \overline{\mathbf{B}}_{s}^{0} & \left(\mathbf{S}_{\psi\phi}\right) & \frac{\left(\mathbf{S}_{\psi\phi}\right)_{\exp}}{\left(\mathbf{S}_{\psi\phi}\right)_{\mathbf{SM}}} \approx 10 - 20 \end{split}$$

Do these deviations signal non-MFV interactions at work ?

Models with non-MFV Interactions facing Large $S_{\psi\phi}$

Model Expectations

0.80 (4G) (Fourth Generation) (t') (Soni, Hou, Munich, Lenz)

0.75 (AC) (abelian flavour, SUSY) (Higgs penguin)

ABGPS

- $S_{\psi\phi} \leq \{0.50 \text{ (RVV)} \text{ (non-abelian flavour, SUSY) (Higgs penguin)} \}$
 - 0.75 (RS) (Heavy KK Gauge Bosons) (Duling et al (08))
 - 0.30 (LHT) (Mirror Fermions at work) (Tarantino et al (09))

$$\begin{array}{c}
 B_{s,d} \rightarrow \mu^{+}\mu^{-} \text{ in Various Models} \\
 Babu, Kolda (99),...+100 \\
 Babu, Kolda (99),...+100 \\
 Babu, Kolda (99),...+100 \\
 Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{\mu^{-}} \longrightarrow Br(B_{s,d} \rightarrow \mu^{+}\mu^{-}) \sim \frac{(\tan\beta)^{6}}{M_{A}^{4}} \\
 Can reach CDF and DØ bounds \\
 Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{4G} \leq 4 \\
 Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{SM} \leq 4 \\
 Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{SM} \leq 1.3 \\
 Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{SM} \leq 1.3 \\
 Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{SM} \leq 1.3
 \end{array}$$

(Z-penguin)(Z-penguin + Z-(Blanke et al) (09)r.h. couplings)Larger effects without(Custodial protection (Haisch et al.)custodial protection (Haisch et al.)(Gori et al) (08)

(Z-penguin + Z-tree with r.h. couplings) (Custodial protection at work) (Gori et al) (08)

SUS

4G has hard time to describe simultaneously ϵ'/ϵ and $S_{\psi\phi} > 0.2$ if $B_{6,8}$ within 20% from large N values

$$\mathbf{B}_{s,d} \rightarrow \mu^+ \mu^-$$
 in 2HDM - MFV $\approx (\tan \beta)^4 / \mathbf{M}_A^4$

(AJB, Carlucci, Gori, Isidori)

$$\mathbf{Br}(\mathbf{B}_{d} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) \mathbf{vs} \mathbf{Br}(\mathbf{B}_{s} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) \mathbf{ss} \mathbf{Br}(\mathbf{B}_{s} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) \mathbf{ss} \mathbf{Br}(\mathbf{B}_{s} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) \mathbf{ss} \mathbf{Br}(\mathbf{B}_{s} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) \mathbf{ss} \mathbf{S}_{\psi}$$

$$\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$$
 and $\mathbf{K}_{\mathrm{L}} \rightarrow \pi^0 \nu \overline{\nu}$ (Z°-penguins)

(TH cleanest FCNC decays in Quark Sector)

$$\bigstar \quad \mathbf{K}_{\mathrm{L}} \to \pi^{0} \nu \overline{\nu} \text{ vs. } \mathbf{K}^{+} \to \pi^{+} \nu \overline{\nu}$$

With ϵ'/ϵ Constraint

Much larger enhancements than in LHT, RS, SUSYf possible

$$K^+ \rightarrow \pi^+ \nu \overline{\nu} \ vs. \ S_{\psi \phi}$$

(Simultaneous Large Enhancements unlikely)

$$\mathbf{K}^{+}
ightarrow \pi^{+} \nu \overline{
u} \, \mathbf{vs} \, \mathbf{S}_{\psi \phi}$$
 (4G)

BDFHPR

(Simultaneous Large Enhancements Possible)

DNA Tests of Flavour Models

O_i : *Observables M_i* : *Models beyond SM*

	M_1	M_2	M_3	M_4	M_5
O_1	***	*	*	*	**
O_2	*	**	***	**	*
O_3	**	***	**	*	*
O_4	***	**	*	***	**
O_5	*	***	*	**	***

Very large New Physics effect Moderate New Physics effect Very small New Physics effect

DNA Tests of Flavour Models

0909.1333

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	4G
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?	**
ϵ_K	*	***	***	*	*	**	***	**
$S_{\psi\phi}$	***	***	***	*	*	***	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?	**
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?	*
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?	**
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?	**
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$\mu ightarrow e \gamma$	***	***	***	***	***	***	***	***
$ au o \mu \gamma$	***	***	*	***	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***	*
d_e	***	***	**	*	***	*	***	*

2020 Vision					
	NEW SM				
$D^0 - \bar{D}^0$	**				
ϵ_K	**				
$S_{\psi\phi}$	***				
$S_{\phi K_S}$	**				
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*				
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	**				
$A_9(B \to K^* \mu^+ \mu^-)$	*				
$B \to K^{(*)} \nu \bar{\nu}$	***				
$B_s \to \mu^+ \mu^-$	***				
$K^+ \to \pi^+ \nu \bar{\nu}$	**				
$K_L \to \pi^0 \nu \bar{\nu}$	***				
$\mu \to e \gamma$	***				
$\tau \to \mu \gamma$	***				
$\mu + N \rightarrow e + N$	***				
d_n	***				
d_e	***				
$(g-2)_{\mu}$	**				

Final Messages

Final Messages

World Cup begins today !

Many Thanks to my Collaborators

SUSY

W. Altmannshofer

P. Paradisi

D. Straub

LHT

M. Blanke

B. Duling

S. Recksiegel

C. Tarantino

RS

DESYBuras0610

4 G

T. Feldmann

S. Recksiegel

S. Gori

E_K

D. Guadagnoli

I.Bigi

A. Bharucha

M. Wick

L. Calibbi

Strong Indian 4G Team

A. Soni

S. Nandi

A.K. Alok

R. Mohanta

Superstars of 2010 – 2015 (Flavour Physics)

$$\begin{array}{c} \mathbf{S}_{\psi\phi} \\ (\mathbf{B}_{s} \rightarrow \phi\phi) \end{array} \bigstar \begin{array}{c} \mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-} \\ (\mathbf{B}_{d} \rightarrow \mu^{+}\mu^{-}) \\ (\mathbf{B}_{d} \rightarrow \mu^{+}\mu^{-}) \end{array} & \begin{array}{c} \mathbf{K}^{+} \rightarrow \pi^{+}\nu\overline{\nu} \\ (\mathbf{K}_{L} \rightarrow \pi^{0}\nu\overline{\nu}) \\ (\mathbf{K}_{L} \rightarrow \pi^{0}\nu\overline{\nu}) \\ (\mathbf{B}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-}) \end{array} \\ \hline \\ \mathbf{\rho}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-} \end{array} \\ \begin{array}{c} \mathbf{\rho}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-} \\ (\mathbf{P}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-}) \\ \mathbf{\rho}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-} \\ (\mathbf{P}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-}) \\ \mathbf{\rho}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-} \\ \mathbf{P}_{d} \rightarrow \mathbf{K}^{*}\mu^{+}\mu^{-} \\$$

Flavour Theory and the Flavour Era

NN

June 2016

61 DESYBuras0610

Backup

Unitarity Triangle in LO Approximation

Correlations in a Flavour Model with LH Currents

$$K_L \rightarrow \pi^0 \nu \overline{\nu} vs. S_{\psi \phi}$$
 (LHT)

(Simultaneous Large Enhancements unlikely)

$$\mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-} \text{ vs. } \mathbf{K}^{+} \rightarrow \pi^{+}\nu\overline{\nu}$$

(LHT)

Blanke, AJB, Duling, Recksiegel, Tarantino

Lepton Flavour Violation,
$$\Delta(g-2)_{\mu}$$
 and EDM's

$$S_{\phi K_s} = 0.44 \pm 0.17 \qquad \left(S_{\phi K_s}\right)_{SM} \approx \left(S_{\psi K_s}\right)_{SM} + 0.02 \approx 0.70$$
(Beneke)

(MEGA)
$$Br(\mu \rightarrow e\gamma) < 1.2 \cdot 10^{-11} \implies 10^{-13}(MEG) SM:10^{-54}$$

$$(a_{\mu})_{SM} < (a_{\mu})_{exp}$$
 (3.1 σ) $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$

(Regan et al)
$$d_e < 1.6 \cdot 10^{-27}$$
 \longrightarrow 10⁻³¹ $(d_e)_{SM} \approx 10^{-38}$
(Baker et al) $d_n < 2.9 \cdot 10^{-26}$ \longrightarrow 10⁻²⁸ $(d_n)_{SM} \approx 10^{-32}$

Correlations in the SU(3) Flavour Model (RVV2)

: (Ellis, Hisano, Raidal, Shimizu; Arganda, Herrero; Paradisi) (Brignole, Rossi)

LHT

: (Blanke, AJB, Duling, Poschenrieder, Tarantino) (2007) del Aguila, Illana, Jenkins (2008), Goto, Okada, Yamamoto (2009) Impressive Success of the CKM Picture of Flavour Changing Interactions

(GIM) (NFC)

(Once quark masses determined : only 4 parameters)

- All leading decays of K, D, B⁰_s, B⁰_d mesons correctly described
- Suppressed transitions : $K^0 \overline{K}^0$, $B^0_d \overline{B}^0_d$, $B^0_s \overline{B}^0_s$ mixings found at suppressed level

CP-violating Data (K, B_d) correctly described

 $B \rightarrow X_s \gamma, B \rightarrow X_s l^+ l^-$ OK

(g-2)

U Very very highly suppressed transitions in the SM consistent with experiment: (not seen)

Standard Model Predictions for Superstars

$$S_{\psi\phi} = 0.035 \pm 0.005$$

 $(S_{\psi\phi})_{exp} = 0.52 \pm 0.20$

$$Br(B_{s} \rightarrow \mu^{+}\mu^{-}) = (3.2 \pm 0.2) \cdot 10^{-9}$$
$$Br(B_{s} \rightarrow \mu^{+}\mu^{-})_{exp} \leq 4.2 \cdot 10^{-8}$$

$$\begin{aligned} & \text{Br} \Big(\text{B}_{\text{d}} \to \mu^{+} \mu^{-} \Big) = \big(1.0 \pm 0.1 \big) \cdot 10^{-10} \\ & \text{Br} \Big(\text{B}_{\text{d}} \to \mu^{+} \mu^{-} \Big)_{\text{exp}} \leq 1.0 \cdot 10^{-8} \end{aligned} \qquad \begin{aligned} & \text{Br} \Big(\text{K}^{+} \to \pi^{+} \nu \overline{\nu} \Big) = \big(8.4 \pm 0.7 \big) \cdot 10^{-11} \\ & \text{Br} \Big(\text{K}^{+} \to \pi^{+} \nu \overline{\nu} \Big)_{\text{exp}} = \big(17 \pm 11 \big) \cdot 10^{-11} \end{aligned}$$

$$\begin{split} \gamma &= \left(64.2 \pm 3.1 \right)^{o} \\ \gamma_{exp} &= \left(75 \pm 15 \right)^{o} \end{split} \label{eq:gamma_states} \begin{array}{l} & \text{Br} \left(K_{L} \rightarrow \pi^{0} \nu \overline{\nu} \right) = \left(2.8 \pm 0.6 \right) \cdot 10^{-11} \\ & \text{Br} \left(K_{L} \rightarrow \pi^{0} \nu \overline{\nu} \right)_{exp} \leq 6 \cdot 10^{-8} \end{split}$$

Maximal Enhancements of $S_{\psi\phi}$, $Br(B_s \rightarrow \mu^+ \mu^-)$ and $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

(without taking correlation between them)

	Upper Bound	Enhancement of	Enhancement of
Model	on (S _{ψφ})	$\mathbf{Br}(\mathbf{B}_{s} \to \mu^{+}\mu^{-})$	$\operatorname{Br}(\mathbf{K}^{+} \to \pi^{+} \nu \overline{\nu})$
CMFV	0.04	20%	20%
MFV	0.04	1000%	30%
LHT	0.30	30%	150%
RS	0.75	10%	60%
4 G	0.80	400%	300%
AC	0.75	1000%	2%
RVV	0.50	1000%	10%
RS = RS with custodial protections			
RH Currents	AC = Agashe, Carone		U(1) _F
	RVV = Ross, Velaso-Sevilla, Vives (04)		
2 DESYBuras0610			

Dominant New Flavour and CP Violating Interactions at $0(\mu_{NP})$

a) Misalignment of quark- and squark mass matrices, similarly for lepton sector
 b) Effects enhanced at large tanβ: δ^{AB}_{ij}

Typical scales(200-1000 GeV)

New flavour and CP violating mixing matrices in the interactions of SM fermions with mirror fermions mediated by W_H, Z_H, A_H

Typical scales (500-1000 GeV)

New Heavy Gauge Bosons (KK) New Heavy Vector-like Fermions (KK)

Tree Level FCNC's mediated by KK Gluon (ΔF=2) and Z(ΔF=1) (Typical scales M_{KK} ≈2-3 TeV) Related to the explanation of hierarchies in masses and mixings

2 x 2 Flavour Matrix of Basic NP Scenarios

(AJB, hep-ph/0101336, Erice)

Correlation in LHT

Correlation in 4G Model

AJB, Duling, Feldmann, Heidsieck, Promberger, Recksiegel (BDFHPR)

Correlation in Flavour SUSY Models

