SUSY and Beyond the Standard Model at the Tevatron

Peter Wittich, on behalf of the CDF and DØ collaborations

Cornell University Laboratory for Elementary-Particle Physics

New physics motivation from an exp. POV

Two Major Drivers:

- Dark Matter from Cosmology
 - heavy, long-lived neutral particle
- Hierarchy Problem
 scale for new physics around 1 TeV

New physics motivation from an exp. POV

Two Major Drivers:

- Dark Matter from Cosmology
 - heavy, long-lived neutral particle
- Hierarchy Problem
 scale for new physics around 1 TeV

New physics motivation from an exp. POV

Two Major Drivers:

- Dark Matter from Cosmology
 - heavy, long-lived neutral particle
- Hierarchy Problem
 scale for new physics around 1 TeV

- → Tevatron Run 2 (and of course LHC!) fits the bill to explore particles with properties and mass scale
- \rightarrow We're in the right place at the right time.

Interpretation of data and theoretical models

- Experiment's job: develop robust signatures; sensitive to a wide range of new physics models
- Either: Null-hypothesis test on standard model
 - strength: open to many possibilities
 - weakness: less sensitive to any particular model
- OR: Optimization for a particular model
 - Minor Optimization: better model limits
- Both methods are pursued
- Personally:
 - what ultimately matters is <u>data vs</u>

Direct searches vs indirect searches

- This talk is focussed on *direct searches*
- Indirect searches are another powerful method
 - Understanding mechanism for CP violation in the B system
- Precision test of SM physics looking for *discrepancies* between SM prediction and data via off-mass-shell weakly produces particles
- Recently lots of buzz about one such measurement
 - Anomalous production of like-sign dimuon pairs at D0
- Michal Kreps (KIT) will cover indirect searches in B system in more detail during Friday Morning session at this conference, also B_s→µµ
- See also talk by Iain Bertram on D0 like-sign di- μ 's at 15:40 on Friday.

Teaser: $\mu^{\pm}\mu^{\pm}$ asymmetry at DO Submitted to P.R.D. arXiv:1005.2757 $B_{d,s}^{0}$ $B_{d,s}^{0}$ μ^{-}

- Precision measurement: Look at decay of B mesons to final states with μ's
- Look for same-charge final states
- D0 reports 3.2σ excess see talks on Friday at this conference

$$A_{\rm sl}^b \equiv \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}} = -2.3^{+0.5}_{-0.6} \times 10^{-4} (\rm SM)$$
$$D0: A_{\rm sl}^b = -0.957 \pm 0.251 (\rm stat) \pm 0.146 (\rm syst)\%$$

Supersymmetry: Grand Dame of NP models

- Based on fundamental symmetries
- Hierarchy Problem solved
- How: double particle spectrum
 - Worked before: postulate positron for quantum mechanics
- Introduce "super-partners" of diff spin
 - Makes theory self-consistent
 - Also provides dark matter candidate
- But: where are they?
 - Mass of positron = Mass electron
 - But not so for missing selectron
 - SUSY is a broken symmetry
- SUSY partners should be visible at Tevatron/LHC

Many other models exist too...

- Large Extra Dimensions:
 - Another formulation of the Hierarchy problem: why is Gravity so weak?
- Universal Extra Dimensions:
 - Models of many extra dimensions can mimic SUSY in some of the phenomenology

• Hidden Valley:

- How to explain the apparent lack of new physics in the Tevatron and LEP data? They're in a hidden sector
- Technicolor models of EWK symmetry breaking...

No questioning the fertile imagination of today's theory community!

© USA Today

Many other models exist too...

- Large Extra Dimensions:
 - Another formulation of the Hierarchy problem why is Gravity so weak?
- Universal Extra Dimensions:
 - Models of many extra dimensions can mimic SUSY in some of the phenomenology
- Hidden Valley:
 - How to explain the apparent lack of new physics in the Tevatron and LEP data? They'r in a hidden sector
- Technicolor models of EWK symmetry breaking...

© USA Today

No questioning the fertile imagination of today's theory community!

Many other models exist too...

- Large Extra Dimensions:
 - Another formulation of the Hierarch why is Gravity so weak?
- Universal Extra Dimensions:
 - Models of many extra dimensions SUSY in some of the phenomenol
- Hidden Valley:
 - How to explain the apparent lack c physics in the Tevatron and LEP da in a hidden sector
- Technicolor models of EWK symmetry breaking...

© USA Today

No questioning the fertile imagination of today's theory community!

The cast of characters

The cast of characters

The cast of characters

Tevatron Performance

- The machine is performing very well
 - Delivering record inst. luminosities (>400E30)
 - Integrating lots of data with high efficiency (>1.7/fb accumulated in FY10 already)
- Today: 5.4/fb, already have 8.6/fb in the can
- On track for a *record-breaking year*

Experiments: CDF and D0

- Run 2 experiments very similar
 - strong central tracking in solenoidal field (η ~1-2), Si innermost
 - good hermetic calorimetry (em & had, $\eta \sim 2-2.5$)
 - extensive muon coverage (η ~1 -2)
 - performant trigger to collect interesting events
- Very similar performance as measured by physics results

Selected Current Results

- Decays to Pairs of Gauge Boson-like objects
- Searches for quark-like particles
- Bump Hunts
- Exotic Exotica

- Highlights
- Full list available:

http://www-cdf.fnal.gov/physics/exotic/exotic.html

http://www-d0.fnal.gov/d0_publications/

Decays to Pairs of Gaugeboson-like Objects

Trileptons: $X \rightarrow WZ$ (Gauge boson pairs), 4.1/fb

- Similar to SUSY chargino/neutralion analyses, but high p_T→ not SUSY but decays to SM Gauge Boson
- require large missing E_T , same-flavor $\frac{3}{24}$ opposite-sign pair in Z mass range, separation btw pair and 3^{rd} lepton
- data consistent with SM expectation.
- Set limit using CL_s technique in m_T(WZ, E_T^{miss})
 - next

Peter Wittich

Diboson resonances in evij, 2.9/fb

- Final state: electron+MET+ 2jets
- Dominant bkgnd: multi-jet and W+jets
- Reconstruct resonant mass
- Interpretation given in different models, optimized for expected resonance mass

 $W \rightarrow ve$ with two solutions 1.Dijets in [65,95] (for WW) 2.Dijets in [70,105] (for WZ) 3-jet events also considered

Peter Wittich

Results for $X \rightarrow$ gauge boson pairs

 Put limits on null result in terms of technicolor theories, generic SM-like heavy W', and RS gravitons G*
 arXiv:1004.4946

 $g\cos\theta_W \rightarrow \xi \times g\cos\theta_W$

 $\xi = C \times (m_W/m_V)^2$

Trileptons: Chargino-Neutralino Search, 3.2/fb

 Rejection using kinematic selections on: m_{I+I-}, n_{jets}, Missing E_T, Δφ between leptons...

Good agreement between data and SM prediction → **set limit**

Search for $\chi_{2}^{\sim 0^{-\pm}}$, CDF Run II Preliminary, 3.2 fb⁻¹ Data 1.6 Signal 1.4 Drell-Yan Diboson 1.2 Events/ 10 GeV/c² 9.0 8.0 1 9.0 8.0 1 Fake nSugra M₀=60, M_{4,0}=190, tan β =3, A₀=0, (μ) 0.8 Cut 0.4 0.2 0 80 100 120 20 40 60 140 160 180 200 M_{os}^1 (GeV/c²) Channel Data SM expected Trilepton 1.5 ± 0.2 1 Lepton+trk 9.4 ± 1.2 6

Chargino-neutralino results

 interpret null result in mSugra SUSY scenario as a convenient/conventional benchmark

m₀ = 60 GeV, tan β =3, A₀=0, μ >0

Excludes mχ[±]₁ < 164 (154 Exp.) GeV/c²

Searches for quarklike objects

Squarks in SUSY

- Strong production cross section → lots of squarks and gluinos produced
 - Very powerful SUSY signature in jets + MET (LSP)
- 3rd generation is special look for it specifically
 - *b* and *t* squarks use *b* tagging
- Large multi-jet backgrounds from generic SM qcd processes make these hard measurements

susy in jets + met:generic squark/gluino production

- Large production cross section, bkgnds from multi-jet, Z→vv, top
- Optimize searches as a function of (Missing *E_T*, *n*_{jet})
- No excess seen so far
- Limits for 2 (2.1)/fb of data for CDF (D0)
- interpret results in mSUGRA-like SUSY scenario

2 b jets + E_T^{Miss} - ~q and LQ $ZH \rightarrow \nu \bar{\nu} b\bar{b}$

 $p\bar{p} \to \tilde{b}_1 \bar{b}_1 \to b \tilde{\chi}_1^0 \bar{b} \tilde{\chi}_1^0$

 $LQ_3 \rightarrow \nu_{\tau} b$

 X_{jj}

 $\frac{p_T^{\text{jetl}} + p_T^{\text{jet2}}}{H_T}$

- Final state familiar from Higgs searches
 - \bullet missing E_T and b quarks
- Also good signal for leptoquarks and SUSY
- event selection:
 - b tagging (D0: neural-net algo)
 - two b-tagged jets, E_T^{miss} , Sign., ΣE_T
 - optimize p_T, E_T^{miss}, H_T, X_{jj} for SUSY/LQ3 signals

2 b jets + E_T^{Miss} - ~q and LQ $ZH \rightarrow \nu \bar{\nu} b\bar{b}$

 $p\bar{p} \to \tilde{b}_1 \bar{b}_1 \to b \tilde{\chi}_1^0 \bar{b} \tilde{\chi}_1^0$

 $LQ_3 \rightarrow \nu_{\tau} b$

 $= \frac{p_T^{\text{jet1}} + p_T^{\text{jet2}}}{H_T}$

 X_{ij}

- Final state familiar from Higgs searches
 - \bullet missing E_T and b quarks
- Also good signal for leptoquarks and SUSY
- event selection:
 - b tagging (D0: neural-net algo)
 - two b-tagged jets, E_T^{miss} , Sign., ΣE_T
 - optimize p_T, E_T^{miss}, H_T, X_{jj} for SUSY/LQ3 signals

Results (b squarks/leptoquarks)

Submitted to Phys Lett B; arXiv:1005.2222v2

Submitted to PRL; arXiv:1005.3600

Supersymmetric top in the $e+\mu+bb+MET$, 3.1/fb

- 3rd generation again special role in SUSY
- Look for decay mode in e μ final state with $E_T^{\text{Miss}} > 18 \text{ GeV}$
 - Low SM backgrounds (Z→ττ,ttbar)
 - Reject with $\delta \Phi$ (lepton, E_T^{Miss}) cuts
- no explicit b tag required
- Consider small and large δ m(stop, sneutrino)
 - drives kinematics of accepted events

 $p\bar{p}$

 $t_{1}t_{1}$

100%

Supersymmetric top in the $e+\mu+bb+MET$, 3.1/fb

- 3rd generation again special role in SUSY
- Look for decay mode in e μ final state with $E_T^{\text{Miss}} > 18 \text{ GeV}$
 - Low SM backgrounds (Z→ττ,ttbar)
 - Reject with $\delta \Phi$ (lepton, E_T^{Miss}) cuts
- no explicit b tag required
- Consider small and large δm(stop, sneutrino)
 - drives kinematics of accepted events
- Bin events in two kinematic variables
 - HT: scaler sum of jet p_T
 - ST: scalar sum of lepton p_T , E_T^{Miss}

D0 Conference Note 5937-CONF

Null result: set limits in sneutrino/stop mass plane

 $p \bar{p}$

 $\mathcal{B}(\tilde{t}_1 \to \tilde{\nu} b \ell) =$

 $t_{1}t_{1}$

100%

Supersymmetric top in the $e+\mu+bb+MET$, 3.1/fb

- 3rd generation again special role in SUSY
- Look for decay mode in e μ final state with $E_T^{\text{Miss}} > 18 \text{ GeV}$
 - Low SM backgrounds (Z→ττ,ttbar)
 - Reject with $\delta \Phi$ (lepton, E_T^{Miss}) cuts
- no explicit b tag required
- Consider small and large δm(stop, sneutrino)
 - drives kinematics of accepted events
- Bin events in two kinematic variables
 - HT: scaler sum of jet p_T
 - ST: scalar sum of lepton p_T , E_T^{Miss}
- Null result: set limits in sneutrino/stop mass plane

 $p\bar{p}$

 $t_1 t_1$

Bump Hunts

Bump Hunts

- Look for excess in invariant mass spectrum
 - an old-fashioned bump hunt
- Three new results
 - diphoton searches
 - diphoton + dielectron searches
 - dimuon searches
 - dijet searches
- Generic, powerful searches should be some of the earliest results from the LHC experiments

di-y bump hunt

- 5.4/fb of data
- Look for events with two photons with $m_{YY} > 30 \text{ GeV}$
- NLO DIPHOX background analytically modeled, corrected for acceptance/detector effects
- heuristic shape for instrumental backgrounds
- fit to m_{YY} distribution
 - low mass control region, sets scale/normalization
 - extrapolate to high mass signal region
- Data is consistent with SM backgrounds

di-γ **and** di-e bump hunts, 5.4/fb

- Same as CDF but with a twist: add γγ and ee channels
 - RS models:
 - BR(G \rightarrow ee) = $\frac{1}{2}$ BR(G \rightarrow YY)
- open selection:
 - two em clusters, split into photons and electrons
- estimate background
 - shape from Pythia simulation, weighted to DIPHOX NLO
 - fit scale in low-mass control region (60 GeV < m < 200 GeV)
- most significant excess near m≈450 GeV γγ
 - 2.3 (2.2) σ in γγ (γγ+ee)
 - Nothing in ee

di-y and di-e bump hunts, 5.4/fb

- Same as CDF but with a twist: add $\gamma\gamma$ and ee channels
 - RS models:
 - BR(G \rightarrow ee) = $\frac{1}{2}$ BR(G \rightarrow YY)
- open selection:
 - two em clusters, split into photons and electrons
- estimate background
 - shape from Pythia simulation, weighted to DIPHOX NLO
 - fit scale in low-mass control region (60 GeV < m < 200 GeV)
- most significant excess near m≈450 GeV γγ
 - 2.3 (2.2) σ in γγ (γγ+ee)
 - Nothing in ee

Results:

- Randall-Sundrum Graviton interpretation
- CDF limits (yy only)

CDF public <u>conference note</u>

- Another signature search
- two high-momentum, oppositesign muons from resonant production
- similar to ee/ $\gamma\gamma$
- Backgrounds: DY ppbar → μμ; pythia w/ mass-dependent kfactor; normalize to low-mass (70 GeV<m_{µµ}<100 GeV)
- Acceptance show PDF suppression at high mass
- Data in search region looks like SM

- Another signature search
- two high-momentum, oppositesign muons from resonant production
- similar to ee/ $\gamma\gamma$
- Backgrounds: DY ppbar → μμ; pythia w/ mass-dependent kfactor; normalize to low-mass (70 GeV<m_{µµ}<100 GeV)
- Acceptance show PDF suppression at high mass
- Data in search region looks like SM

- Another signature search
- two high-momentum, oppositesign muons from resonant production
- similar to ee/ $\gamma\gamma$
- Backgrounds: DY ppbar → μμ; pythia w/ mass-dependent kfactor; normalize to low-mass (70 GeV<m_{µµ}<100 GeV)
- Acceptance show PDF suppression at high mass
- Data in search region looks like SM

- Another signature search
- two high-momentum, oppositesign muons from resonant production
- \bullet similar to ee/yy
- Backgrounds: DY ppbar → μμ; pythia w/ mass-dependent kfactor; normalize to low-mass (70 GeV<m_{µµ}<100 GeV)
- Acceptance show PDF suppression at high mass
- Data in search region looks like SM

highest mass event: $m_{\mu\mu} = 882 \text{ GeV}$

- No excess observed;
- Set limits in terms of several Z' models
- Z[']_{SM} > 1071 GeV
- data "best fit":
 - consider fit of signal fraction (number of Z') and mass as 2d fit
- best fit at m=190 GeV, sz=1.3%
 - p-value 16%

Model	Mass Limit (GeV/c^2)
Z'_l	817
Z'_{sec}	858
Z'_N	900
Z'_{ψ}	917
Z'_{χ}	930
$Z^{\hat{i}}$	038
Z_{SM}^{η}	1071

Dijet Mass Spectrum

- Choose events with two high-pt, central jets (|η|<1.0)
- Signal: bump in region m_{jj}>180 GeV
- Sensitive to all the usual resonar signal productions, with large production cross sections and decay BR's
- Functional form of dijet mass using pythia/herwig fit to data. Look for narrow excess.
- Data is consistent with SM: Set limits in various models

Quark Compositeness

- Dijet angular distributions is measured in bins of dijet mass
 - First differential cross section measurement at partonic energies >1 TeV!
 - Small experimental and theoretical uncertainties.
 - Sensitive to New Physics: compositeness, extra dimensions, ...
 compositeness scale 2.75-3.06 TeV

Phys. Rev. Lett. 103, 191803 (2009)

Exotic Models

Hidden Valley: resonant pair production of neutral long-lived particles

- Production of "v-particles": possibly long-lived particles from a 'hidden sector'
- Due to structure of theory: long-lived particles mix with SM H
- Consider b-like events
 - 1.6 cm < *L*_d < 20 cm
- Require:
 - \geq 2 jets, \geq 1 μ near jet, \geq 2 good SV's
- Two optimizations:
 - m_{SV}, co-linearity (low *m*_{HV}, high *m*_{HV})
- Backgrounds:
 - heavy flavor (L_{xy} cut)
 - interactions in material (region cuts)
- Set limits on $m_{\rm HV}$ vs $m_{\rm H}$ as fcn of $L_{\rm d}$.

$$\begin{array}{rccc} H & \to & HVHV \\ HV & \to & b\overline{b} \end{array}$$

Co-linearity:
$$\mathbf{x}^{SV} \cdot \mathbf{p}_T^{SV} < .9937$$

Hidden Valley: resonant pair production of neutral long-lived particles

- Production of "v-particles": possibly long-lived particles from a 'hidden sector'
- Due to structure of theory: long-lived particles mix with SM H
- Consider b-like events
 - 1.6 cm < *L*_d < 20 cm
- Require:
 - ≥ 2 jets, $\ge 1 \mu$ near jet, ≥ 2 good SV's
- Two optimizations:
 - m_{SV}, co-linearity (low *m*_{HV}, high *m*_{HV})
- Backgrounds:
 - heavy flavor (L_{xy} cut)
 - interactions in material (region cuts)
- Set limits on m_{HV} vs m_{H} as fcn of L_d .

$$II \rightarrow IIV IIV$$

$$HV \rightarrow b\bar{b}$$
Co-linearity: $\mathbf{x}^{SV} \cdot \mathbf{p}_T^{SV} < .9937$

$$I^{0} \rightarrow I^{0} \rightarrow$$

τιττ

10⁻²

8

6

Min(SV1,SV2) Mass (GeV)

Hidden Valley: resonant pair produof neutral long-lived particles

- Production of "v-particles": possibly long-lived particles from a 'hidden sector'
- Due to structure of theory: long-lived particles mix with SM H
- Consider b-like events
 - 1.6 cm < *L*_d < 20 cm
- Require:
 - \geq 2 jets, \geq 1 μ near jet, \geq 2 good SV's
- Two optimizations:
 - m_{SV}, co-linearity (low *m*_{HV}, high *m*_{HV})
- Backgrounds:
 - heavy flavor (L_{xy} cut)
 - interactions in material (region cuts)
- Set limits on $m_{\rm HV}$ vs $m_{\rm H}$ as fcn of $L_{\rm d}$.

New Physics searches at the Tevatron

- D0 and CDF continue to mine the Tevatron dataset for hints of something new
- I've presented results with > 5/fb of data; expect to see >6/fb by end of the summer and 10+/fb by the end of Run 2
- We are exploring the large and growing datasets from our wellunderstood detectors
- Still a lot of fun things to be done before the LHC takes over!

Backup Slides

Search for high-mass narrow resonances in the dielectron channel

- Look for resonant production of heavy particle decaying to dielectron pair
- "bump hunt" across mass range
- Estimate non-DY and non-fake bkgnd from MC
- di-fakes biggest instrumental background from generic qcd
- normalize dy +fake to 70<mee<150 region after subtracting MC-derived estimates
- No excess observed
- Set limits in various different new physics models
 - RS gravitons
 - KK gravitons

90

Di-electron bump hunt: results

- Nothing to see across entire mass range
- Nothing to see around ~240 GeV, either (2.5 σ CDF hint in 2.5/fb)

Tevatron parameters

TEVATRON Parameters

Parameter	Last Store	Best Store	Last 10 Stores (Ave)	Best 10 Stores (Ave	e) FY Average P	revious FY (last 50)	FY End Goal (Design)	FY End Goal (Bas	se)
Protons per bunch	269.3	287.1	295.1	284.8	271.0	249.7	.0	.0	1e9
Pbars per bunch	60.2	96.3	68.1	93.8	77.2	66.8	.0	.0	1e9
Proton Efficiency to low ?	78.4	72.7	72.2	71.3	74.7	71.4	.0	.0	%
Pbar Efficiency to low ?	87.9	82.7	85.6	82.3	80.4	82.5	.0	.0	%
HourGlass factor	.68	.66	.67	.66	.66	.67	.00	.00	
Initial Luminosity lifetime	.0	.0	.0	.0	.0	.0	.0	.0	Hours
Asymptotic Luminosity lifetime	.0	.0	.0	.0	.0	.0	.0	.0	Hours
Effective Emittance	9.8	11.3	10.9	11.4	12.2	11.3	.0	.0	? mm mr

