

Tevatron: The Reach for the Higgs

G.Watts (U.Washington/Seattle)
For the CDF and D0 Collaborations

Physics at the LHC June 8, 2010

F. Englert and R. Brout. Phys Rev. Lett. 13: 321-323(1964); P.W. Higgs, Phys. Rev. Lett 13: 508-509 (1964); G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble. Phys. Rev. Lett. 13: 585-587 (1964)

The Standard Model

Higgs Production

Higgs Decay

 $H \to b \overline{b}$

Mass Region: $m_H \lesssim 135 \ GeV$ $b\bar{b}$ production overwhelms Hproduction ($\tau\tau$ too).

Look for associated production

 $H \to W^+ W^-$

Mass Region: $m_H \gtrsim 135 \ GeV$ W^+W^-, ZZ have small SM backgrounds

Look for gluon-gluon fusion

Tevatron Search Strategy

Standard Model Backgrounds

Standard Model Backgrounds

Thanks R. Heuer

Past few decades

"Discovery" of Standard Model

through synergy of

hadron - hadroncolliders(e.g. Tevatron)lepton - hadroncolliders(HERA)lepton - leptoncolliders(e.g. LEP, SLC)

The Lamppost

Radiative Corrections point to the most likely place to search for a SM Higgs.

Most Likely Value $m_H = 87 \ GeV$ 95% C.L. $m_H < 186 \ GeV$

Lower mass bound from direct searches at

LEP: 114.4 GeV @ 95%CL

 Search for neutral Higgs bosons decaying into four τ's at LEP2 (arXiv:1003.0705) (BSM Search)

The Tevatron

The Tevatron

 $p\bar{p}$ collider Radius (~1 km) $\sqrt{s} = 1.96 \text{ TeV}$ Run II Started March 2002

Tevatron Performance

Collider Run II Peak Luminosity

| 12

DØ Data Taking

Run II Integrated Luminosity

19 April 2002 - 23 May 2010

Number of Higgs Recorded

Recorded Luminosity, for just DØ...

The Experiments

| 15

CDF & DØ are Multi-Purpose Detectors

- Precision Tracking necessary for b-quark jet identification (Silicon Strips)
- Larger Volume Tracking
 - Drift Chamber in CDF
 - Fiber Straw Tracker in DØ
- Nearly 4π coverage for muon and calorimeter detectors

The Experiments

Sophisticated Trigger And Reconstruction Software

- Trigger on Significant Missing Energy, high E_T jets, and isolated high p_T particles (e^{\pm}, μ^{\pm}) .
- Excellent τ reconstruction, precision jet resolution, etc.
- DAQ Efficiency > 90%

The Low Mass Higgs Search

Low Mass Higgs Searches

Acceptance Increases

 $WH \rightarrow \ell v b \overline{b}, ZH \rightarrow v v b \overline{b}, ZH \rightarrow \ell \ell b \overline{b}$ are all mature analyses

• Open the Lepton ID

Acceptance Increases

<u> $WH \rightarrow \tau \nu b\bar{b}$ </u> Use a neural network to select hadronic tau decays

au Final States

b-Jet Tagging

b-Jet Tagging

b-Jet Tagging

Use the number of b-tags to separate data into high and low S:B regions

 $DOWH \rightarrow \ell \nu b \bar{b}$

Separate regions are recombined in final limit setting step with appropriate weight

All separate regions must be completely orthogonal Technique is

common and mature

Jet Resolution

Jet Resolution

Or use a part of the calorimeter with better energy resolution

Multivariate Discriminants

Decision Trees

Come in many flavors.

Varying robustness against over-training, amounts noise, and discrimination power

Neural Networks

Come in many flavors also (including boosted!).

Train on Monte Carlo.All techniques require careful cross check of all inputs and good modeling of backgrounds and of correlations between input variables

Do not cut on output of discriminant in most cases Bin in discriminant output (bins of increasing S:N)

Depending on channel S:N can be 1:10 or 1:50 (x10 over dijet mass alone)

Matrix Element Discriminator

Reverse Monte Carlo Generator and Detector Simulation

Techniques used for single-top discovery, WW,WZ observations

Inputs tend to be Lepton 4-vector, Jet 4-vectors, etc.

The High Mass Higgs Search

High Mass Searches

Gluon Fusion production rate is x10 higher than associated production rate Highest BR modes are inaccessible due to overwhelming SM background

Di-boson modes are most commonly used for the search

 $gg \rightarrow H \rightarrow WW \rightarrow \ell \ell \nu \nu$ $\sigma \times BR = 0.04 \text{ pb at } m_H = 160 \text{ GeV.}$

About 6% of H decays...

Event Selection and Background Rejection

High p_t isolated muons and electrons required

There should be no b-quark jets in these events

31

CDF Rejects events with a good b-quark tag

Further S:N Enhancements

Instead of jet bins, DØ uses N_{Jets} as input to its NN

Both experiments also split leptons into high/low S:N regions Different fractions of back ground and S:N mean better handling by a profile fitter as well

CDF uses a Matrix Element technique in its 0 Jet bin, and a NN in the other bins DØ uses a NN in all jet bins

Combining Standard Model Higgs Results

Combined Limits

Tevatron working group combines results from both CDF and DØ.

Experiments have agreed on treatment of

- Luminosity
- Systematic Errors
- Theory Cross Sections

CDF

CLs and Modified Baysean Methods are used; results agree to 5%

DØ

Channel

 $\begin{array}{ll} WH \rightarrow \ell\nu bb \ 2\text{-jet channels} & 3\times(\text{TDT,LDT,ST,LDTX}) \\ WH \rightarrow \ell\nu b\bar{b} \ 3\text{-jet channels} & 2\times(\text{TDT,LDT,ST}) \\ ZH \rightarrow \nu\bar{\nu}b\bar{b} & (\text{TDT,LDT,ST}) \\ ZH \rightarrow \ell^+\ell^-b\bar{b} & (\text{low,high } s/b)\times(\text{TDT,LDT,ST}) \\ H \rightarrow W^+W^- & (\text{low,high } s/b)\times(0,1 \text{ jets})+(2+ \text{ jets})+\text{Low}-m_{\ell\ell} \\ WH \rightarrow WW^+W^- \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu \\ H + X \rightarrow \tau^+\tau^- + 2 \text{ jets} \\ WH + ZH \rightarrow jjb\bar{b} \end{array}$

 $\begin{array}{l} \hline \text{Channel} \\ \hline WH \rightarrow \ell \nu b \bar{b} & 2 \times (\text{ST,DT}) \\ VH \rightarrow \tau \tau b \bar{b} / q \bar{q} \tau \tau \\ ZH \rightarrow \nu \bar{\nu} b \bar{b} & (\text{ST,TLDT}) \\ ZH \rightarrow \ell^+ \ell^- b \bar{b} & 2 \times (\text{ST,DT}) \\ WH \rightarrow WW^+ W^- \rightarrow \ell^\pm \nu \ell^\pm \nu \\ H \rightarrow W^+ W^- \rightarrow \ell^\pm \nu \ell^\pm \nu \\ H \rightarrow \gamma \gamma \\ t \bar{t} H \rightarrow t \bar{t} b \bar{b} & 2 \times (\text{ST,DT,TT}) \end{array}$

Over 90 channels

Combining The Low Mass Results

How far are we from reaching the SM? Many production and decay channels are included in this plot!

Sensitivity is the differences between LLR_b and LLR_{s+b}

G.Watts (UW)

39

Combining The High Mass Results

40

Beyond The Standard Model

Beyond The Standard Model

Higgs Sector Enriched

Huge Parameter Space To Explore

Search for specific, predictive, models...

Fermiophobic Higgs

Enhanced coupling to 2-photon final state Doubly charged Higgs

See public results pages for CDF and DØ.

MSSM

Two additional doublets couple to the up and down fermions Symmetry breaking gives 5 Higgs left over: Neutral:A (CP Odd), H, h (CP Even) Charged: H^{\pm} m_A $tan\beta$ – Ratio of doublet vev

MSSM – high $tan\beta$ regime

A/h or A/H are degenerate (Φ) Enhanced coupling to $\tau^+\tau^-$ (10%) and $b\bar{b}$ (90%)

 $\Phi \rightarrow b\overline{b}$ - Multi-Jet Background $(b\overline{b})\Phi \rightarrow b\overline{b}(b\overline{b})$ – Associated Production $\Phi \rightarrow \tau^{+}\tau^{-}$ - Also associated production with a b-quark

General Performance of b and τ tagging

b - 50% efficiency; 0.5% fake

 τ – 60% efficiency; 1% fake

Charged Higgs Decays – not discussed here

$b\Phi \rightarrow \tau^+ \tau^- + b$ Results

$\Phi \rightarrow \tau^+ \tau^-$ Combination

$b\Phi \rightarrow 3b$

Very challenging measurement: multi-jet $b\overline{b}$ production is overwhelming

$$b\Phi \rightarrow 3b$$

Use CL_s method and fits to these two distributions to come up with final limits

Conclusions

The Past Is The Best Predictor

The Past Is The Best Predictor

2xCDF Preliminary Projection, m_H=115 GeV

Conclusions

Mature Analyses – Rapid inclusion of new data into each analysis

- No channel is too small to explore
- SM Exclusion between 162 166 GeV
- Average luminosity in SM channels is about 4.4 fb⁻¹. Each experiment has about 7.8 fb⁻¹ recorded.
- New combination for > 6 fb⁻¹ is hoped for the summer
- BSM Higgs Searches are catching up
 - Combination Machinery is now working update this summer
 - Many more channels to be explored
 - MSSM $tan\beta > 30 50$ is already ruled out.
- New Developments constantly being brought online
 - Not all results presented in this talk have been folded into the combination yet
- Stay tuned for the next year of running!

Systematic Uncertainties

•Two types of systematics on estimated signal and background:

-Rate systematics: only affect overall normalization

-Shape systematics: change differential distribution, i.e. due to JES, MC modeling

•Systematics correlated between CDF and D0:

-Integrated luminosity (4% correlated out of 6%)

-Theoretical cross sections for signal and backgrounds (5-10%)

•Other Sources correlated within experiment:

-Lepton ID, 2-4%

- Btag SF, JES, FSR/ISR, 5-10%

-Jet/Missing Et modeling

-MC simulated backgrounds (W/Z+HF)

- instrumental backgrounds(non-W, mistag)

Something on that paper on how the Tevatron isn't doing the PDF errors correctly?

CDF Published Limits

M _H (GeV/c²)	110	120	130	140	145	150	155	160	165	170	175	180	190	200
Bayesian Expected	26.3	8.85	4.41	2.85	2.43	2.05	1.67	1.26	1.20	1.44	1.72	2.09	3.24	4.53
Bayesian Observed	38.9	12.0	6.38	4.21	3.23	2.62	2.04	1.34	1.29	1.69	1.94	2.24	4.06	6.74

D0 Published Limits

M _H (GeV/c²)	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
Expected	14.9	9.74	7.20	5.40	4.23	3.48	3.07	2.58	2.02	1.43	1.36	1.65	2.06	2.59	3.28	4.20	5.08	6.23
Observed	30.8	13.6	8.81	6.63	6.41	5.21	3.94	3.29	3.25	1.82	1.55	1.96	1.89	2.11	3.17	3.27	5.77	5.53

CDF+D0 Published limits

M _H (GeV/c²)	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
Bayesian Expected	3.24	2.63	2.12	1.92	1.59	1.25	0.92	0.87	1.04	1.26	1.56	2.07	2.40	3.09	3.55
Bayesian Observed	4.65	4.18	3.58	2.61	2.17	1.96	1.04	0.93	1.26	1.20	1.34	2.14	2.42	4.07	4.47
CLs Expected	3.26	2.52	2.18	I.87	1.53	1.24	0.89	0.84	1.06	1.28	1.56	2.07	2.46	3.17	3.62
CLs Observed	4.49	4.06	3.45	2.49	2.12	1.84	0.98	0.89	1.21	1.18	1.31	2.15	2.36	4.10	4.35

CDF limits for March 2010

M _H (GeV/c²)	110	115	120	125	130	135	140	145	150	155
-2 σ/σ_{SM}	9.97	5.40	3.48	2.31	1.72	1.37	1.13	0.95	0.81	0.69
$-1\sigma/\sigma_{SM}$	14.50	7.91	5.12	3.37	2.52	1.99	1.63	1.37	1.18	0.99
$\text{Median}/\sigma_{\text{SM}}$	21.88	11.93	7.70	5.11	3.83	3.02	2.51	2.09	1.78	I.48
+ $I\sigma/\sigma_{SM}$	32.92	17.98	11.66	7.67	5.83	4.54	3.79	3.18	2.70	2.22
+2 σ/σ_{SM}	47.49	25.75	16.80	11.00	8.30	6.57	5.57	4.59	3.89	3.22
$\text{Observed}/\sigma_{\text{SM}}$	28.72	13.03	8.47	5.33	4.25	3.69	3.45	2.30	2.01	1.60
M _H (GeV/c²)	160	165	170	175	180	185	190	195	200	
M _H (GeV/c²) -2σ/σ _{SM}	160 0.52	165 0.50	170 0.56	175 0.69	180 0.81	185 1.07	190 1.30	195 1.52	200 1.72	
M _H (GeV/c ²) -2σ/σ _{SM} -1σ/σ _{SM}	160 0.52 0.74	165 0.50 0.70	170 0.56 0.80	175 0.69 0.97	180 0.81 1.18	185 1.07 1.54	190 1.30 1.88	195 1.52 2.24	200 1.72 2.51	
$\begin{array}{c} M_{H}\\ \textbf{(GeV/c^{2})}\\ \textbf{-2}\sigma/\sigma_{SM}\\ \textbf{-1}\sigma/\sigma_{SM}\\ \end{array}$	160 0.52 0.74 1.09	165 0.50 0.70 1.03	170 0.56 0.80 1.17	175 0.69 0.97 1.43	180 0.81 1.18 1.75	185 1.07 1.54 2.32	190 1.30 1.88 2.82	195 1.52 2.24 3.39	200 1.72 2.51 3.80	
$\begin{array}{c} M_{H} \\ (GeV/c^{2}) \\ \hline -2\sigma/\sigma_{SM} \\ \hline -1\sigma/\sigma_{SM} \\ \hline Median/\sigma_{SM} \\ \hline +1\sigma/\sigma_{SM} \end{array}$	160 0.52 0.74 1.09 1.61	165 0.50 0.70 1.03 1.54	170 0.56 0.80 1.17 1.75	175 0.69 0.97 1.43 2.14	180 0.81 1.18 1.75 2.63	185 1.07 1.54 2.32 3.53	190 1.30 1.88 2.82 4.28	195 1.52 2.24 3.39 5.11	200 1.72 2.51 3.80 5.79	
$\begin{array}{c} M_{H} \\ (GeV/c^{2}) \end{array}$ $-2\sigma/\sigma_{SM} \\ -1\sigma/\sigma_{SM} \\ Median/\sigma_{SM} \\ +1\sigma/\sigma_{SM} \\ +2\sigma/\sigma_{SM} \end{array}$	160 0.52 0.74 1.09 1.61 2.35	165 0.50 0.70 1.03 1.54 2.22	170 0.56 0.80 1.17 1.75 2.57	175 0.69 0.97 1.43 2.14 3.11	180 0.81 1.18 1.75 2.63 3.79	185 1.07 1.54 2.32 3.53 5.06	190 1.30 1.88 2.82 4.28 6.28	195 1.52 2.24 3.39 5.11 7.55	200 1.72 2.51 3.80 5.79 8.47	

57

