

PHYSICS AT LHC 2010 7 - 12 June 2010 DESY, Hamburg

ALICE First Physics Results

Andrea Dainese (INFN Padova) on behalf of the ALICE Collaboration

Outline

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle pt spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged p_t spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

in preparation

preliminary

published

- ITS, TPC, TOF, HMPID, MUON, V0, T0, FMD, PMD, ZDC (100%)
- TRD (7/18)
- EMCAL (4/12)
- PHOS (3/5)

→ J.Schukraft

Trigger & Data samples

- **"Minimum bias"**, based on interaction trigger:
 - SPD or V0-A or V0-C
 - $_{\text{O}}$ at least one charged particle in 8 η units
- read out all ALICE
- **single-muon** trigger:
 - forward muon in coincidence with Min Bias
 - read out MUON, SPD, V0, FMD, ZDC

Activated in coincidence with the BPTX beam pickups

- 2009 (0.9 and 2.36 TeV)

• 2010, to June 8th (0.9 and 7 TeV)

Outline

Particle multiplicity

- > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle p_t spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged p_t spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

preliminary

published

in preparation

- Multiplicity measured using tracklets in the two pixel layers ($R \sim 4$ and 7 cm)
- ALICE has published the pseudorapidity density and multiplicity distribution at 0.9, 2.36, and 7 TeV
 - First LHC paper
 - First 7 TeV paper
 - All three papers accepted by EPJC

\rightarrow P.Hristov

0.9 and 2.36 TeV

- INEL and NSD
- Use measured cross sections for diffractive processes
- Change MC generator fractions (SD/INEL, DD/INEL) such that they match these fractions
- Use Pythia and Phojet to assess effect of different kinematics of diffractive processes

7 TeV

- Diffraction is quite unknown
- Hadron-level definition of events (similar to ATLAS first paper)
 - All events that have at least one charged primary particle in |η| < 1: "INEL>0"
 - Minimizes model dependence

INEL: MB_{OR} (SPD OR VZEROA OR VZEROC) AND offline background suppression

<u>NSD</u>: MB_{AND} (VZEROA AND VZEROC) AND offline background suppression <u>INEL>0</u>: INEL AND at least one charged primary particle in $|\eta| < 1$

 $dN_{ch}/d\eta$ vs. other experiments

- Consistent with UA5
 - > (only 900 GeV)
- Consistent with CMS
 - (only NSD)

INFN

➢ does not include charged leptons → ~1.5 % difference

.

0<u>∟</u> -2

- Pythia D6T and Perugia-0 match neither INEL, NSD or INEL>0 at any energy
- Pythia ATLAS-CSC and Phojet reasonably close with some deviations at 0.9 and 2.36 TeV
- Only ATLAS-CSC close at 7 TeV

 $dN_{ch}/d\eta$ vs. Monte Carlo

dN_{ch}/dŋ

2.36 TeV

dN_{ch}/dŋ

arXiv:1004.3514

Power law dependence fits well

Significantly larger increase from 0.9 to 7 TeV than in MCs

Increase in dN _{ch} /dh	√s ALICE (%)		MCs (%)
in η < 1 for INEL > 0	0.9 → 2.36 TeV	23.3 ± 0.4 $_{-0.7}^{+1.1}$	15 – 18
arXiv:1004.3514	0.9 → 7 TeV	57.6 ± 0.4 _{-1.8} ^{+3.6}	33 – 48

Multiplicity Distributions

Distributions in three η-regions

INFN

- Consistent with UA5 ($|\eta|$ <0.5)
- Fits with one negative binomial work well in limited η-regions
 - clan-based model of production production
- Difference between INEL and NSD in low-multiplicity region
 0.9 TeV: ALICE vs. UA5
 0.9 TeV: INEL vs. NSD

 dN/dN_{ch} : vs. Monte Carlo

Phojet

- provides a good description at 900 GeV
- fails at 2.36 and 7 TeV
- Pythia Atlas CSC
 - fails at 0.9 TeV
 - reasonably close at 2.36 and 7 TeV but deviations around 10-20
- Pythia D6T and Perugia-0 far from the distribution at all energies

INFN

Outline

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle pt spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged p_t spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

in preparation

preliminary

published

Andrea Dainese

→ALICE measures harder spectrum than CMS, ATLAS, UA1 (narrower window at central rapidity)

 $< p_{+} > vs$ multiplicity (0.9 TeV)

 "Power-law"-like tail becomes harder at high multiplicity

INFN

<p_t> vs N_{ch} from fit function, with
 3 p_t cutoffs (> 0, 150, 500 MeV/c)

- Perugia-0 (which fails for multiplicity) describes well <pt>pt>, but only for pt>500 MeV/c (ATLAS found agreement for pt > 500 MeV/c)
- \rightarrow **Phojet** (which describes multiplicity) fails for <p_t>

Comparison to MCs: summary

	MC/TUNE	D6T	Perugia	0	CSC		PHOJET	
[eV	η	-20%	-17%		+3%		-2%	
L 6.0	N _{ch}	N _{ch} >10	N _{ch} >5		N _{ch} >15		N _{ch} >10	
S =	P _t		p _t >4	Gev	p _t >1GeV		p _t >1GeV	
7	<pt></pt>							

√s = 2.36 TeV

\rightarrow 0.9 TeV: PHOJET better for N_{ch}, Perugia-0 for p_t

η	-24%		-21%		-2%		-8%	
N _{ch}	N _{ch} >10		N _{ch} >5	N	I _{ch} >20	N _c	_{:h} >15	

TeV	η	-27%	-24%	-4%	-17%
	N _{ch}			N _{ch} >30	
S∖	> 0 00	7 7 1 1			

\rightarrow 2.36, 7 TeV: CSC better for N_{ch}

INFN

Outline

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle p_t spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged pt spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

preliminary

published

in preparation

p/p measurement at mid-rapidity

- Proton identification with TPC dE/dx
- Special care for secondaries and absorption corrections
- pbar/p at |y| < 0.5 and 0.45 < p_t < 1.05 GeV/c</p>

◆ Baryon-stopping at low
 ∆y=y_{beam}-y_{CM}
 Vanishes at high LHC energy

INFN

p/p measurement vs. MCs

 Baryon number transport is usually explained by a String Junction transfer (gluon field)

 What is the intercept of the corresponding Regge trajectory

• $(\alpha_{SJ} = \frac{1}{2} \text{ or } 1?)$

- Data described well by PYTHIA tunes
- Other models (HIJING-B, QGSM with α_{SJ} ~ 1) underestimate the data
- Data show suppression baryon transport over large rapidity gaps in pp collisions

Outline

Andrea Dainese

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle p_t spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged p_t spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

in preparation

published

- Assess the space-time evolution of the system that emits particles in pp collisions
- Measure the Bose-Einstein enhancement for pairs of pions (identical bosons) at low momentum difference q_{inv}=|p₁-p₂|, vs. event multiplicity and pair k_t = |p_{t1}+p_{t2}|/2

Fit with a Gaussian

INFN

$$C(q_{inv}) = 1 + \lambda \exp\left(-q_{inv}^2 R^2\right)$$

→ D.Miskowiec

Physics at LHC 2010, DESY-Hamburg, 09.06.10

23

Femtoscopy results at 0.9 TeV

 Radius grows with dN_{ch}/dη: consistent with other data and expectations (larger correlation volume at large multiplicities)

INFN

No visible k_t dependence

Outline

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle pt spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged pt spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

in preparation

preliminary

published

in preparation

Identified spectra: one of ALICE's specials

26

INFN

momentum p (GeV/c)

- Analysis in progress (spectra not fully corrected yet)
- Good agreement between the 3 detectors (ITS, TPC, TOF)
- Shows that detectors' calibration/understanding is OK

Physics at LHC 2010, DESY-Hamburg, 09.06.10

28

INFN

K[±] TPC+TOF PID

- K⁰_S vertex reconstruction
 K[±]→µ[±]v kink reconstruction
- Spectra not fully corrected
 Good internal constency

$\boldsymbol{\varphi}$ and K^{*0} at 0.9 and 7 TeV

Physics at LHC 2010, DESY-Hamburg, 09.06.10

INFN

Physics at LHC 2010, DESY-Hamburg, 09.06.10

3

Physics at LHC 2010, DESY-Hamburg, 09.06.10

10⁸ MinBias events

ALICE Performance

31/05/2010

p (GeV/c)

45E

40F

35F

30

25F

20

15F

Andrea Dainese

0.2 0.3 0.4 0.5

ALICE

ALICE work in progress

PHOS

5 GeV/c

0.6 0.7 0.8 M,,, GeV/c

Jet reconstruction

35

- Charged-track jets raw spectra 0.9 and 7 TeV
 - |η|<0.5</p>

INFN

- Four jets algos compared
- uncorrected

Outline

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle p_t spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged p_t spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - $\succ \pi^0$ and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

in preparation

preliminary

published

Event shape studies

- Event shapes are sensitive to underlying event properties
 - multiple interactions mechanism
 - tuning of MC generators
- Can be used to classify events as "soft" or "hard"
- Look for unusual topologies
- Transverse thrust (hard scattering frame moves longitudinally)

Event shape: Thrust

- \diamond < τ > (= <1-T>) vs. multiplicity at 0.9 and 7 TeV
- Thrust spectrum is unfolded based on MC (χ^2 minimization)
- → data more "spherical" (less back-to-back-ish) than MCs

Andrea Dainese

Event structure: Underlying Event

Event-by-event analysis:

INFN

- identify leading hadron
- define transverse regions
- $\succ \Sigma p_t$ in the two regions
- ♦ Region with larger energy (MAX)
 → sensitive to QCD final-state radiation
- ♦ Region wth smaller energy (MIN)
 → sensitive to soft component (multiple interactions)

Underlying Event 7 TeV: first look at Δφ
 Start by looking at inclusive Δφ correlations wrt leading track
 Data not corrected, compared to MCs (geant + recon)
 Leading pt<10 GeV/c → data less back-to-back-ish than MCs

Physics at LHC 2010, DESY-Hamburg, 09.06.10

Outline

- Particle multiplicity
 - > $dN_{ch}/d\eta$ and dN/dN_{ch} measurements at 0.9, 2.36, and 7 TeV
- Momentum spectra
 - Charged particle p_t spectra at 0.9 TeV
- Baryon production
 - Anti-proton/proton ratio at 0.9 and 7 TeV
- Particle emitting source
 - Femtoscopy (HBT) at 0.9 TeV
- Momentum spectra, outlook
 - Identified charged p_t spectra at 0.9 TeV
 - Strangeness at 0.9 and 7 TeV
 - > π^0 and jet reconstruction at 7 TeV
- Event topology
 - Event shape and underlying event at 7 TeV
- Heavy Flavour production
 - > Charm and J/ ψ production at 7 TeV

published

preliminary

in preparation

J/ψ→μμ, -4<η<-2.5

INFN

Charm: D meson reconstruction

- Main selection: displaced-vertex topology
- Example: $D^0 \rightarrow K^-\pi^+$
 - good pointing of reconstructed D momentum to the primary vertex
 - ppair of opposite-charge tracks with large impact parameters
- K ID in TPC+TOF helps rejecting background at low

Heavy flavour from single leptons

c and b production in semi-leptonic channels in preparation

Electrons $|\eta|$ <0.9: TPC dE/dx after K and p rejection with TOF. TRD and EMCAL will join soon

+ displacement selection \rightarrow beauty

INFN

Heavy flavour from single leptons

c and b production in semi-leptonic channels in preparation

Muons -4<η<-2.5:

Light quark contribution subtracted with PYTHIA (normalized to data at low p_t). Not corrected.

→ c (low p_t) & b to be separated by fitting based on pQCD shapes, in progress ...

First Physics Results from ALICE

- Particle multiplicity
 - > increase from 0.9 to 7 TeV significantly larger (>20%) than predicted
- Momentum spectra
 - $> < p_t > VS N_{ch}$ not described by any of the MCs
- Anti-proton/proton ratio at midrapidity
 - *p*/p goes to 1 at 7 TeV → baryon number transfer suppressed over large Δy
- Femtoscopic measurement at 0.9 TeV
 - particle emitting source "size" increases with multiplicity
- Event topology
 - > lower "jettiness" than expected in LHC collisions
- Promising performance for ID spectra, strangeness, charm, charmonium
 - > ALICE is ready to deliver many more Physics Results

Papers in the pipeline:

- Charged particle p_t distribution
- Baryon-antibaryon asymmetry
- Bose-Einstein correlations
- Strangeness production (K^0 , Λ , Ξ , Φ)
- Identified particles p_T (π, K, p)

Analyses in progress:

- dN/dp_t at 7 TeV
- π⁰, η
- c and b production
- J/w production
- high multiplicity
- jet correlations
- event shape
- underlying events
- reconstructed jets
- b-tagged jets

November 2010: Pb-Pb collisions in ALICE! →H.Torii