

PHYSICS AT LHC 2010 7 - 12 June 2010 DESY, Hamburg

Physics with first LHCb data

Olivier Schneider on behalf of LHCb

Physics with first LHCb data

Introduction

motivation and physics goals of LHCb

Preliminary results

- $-K_{\rm S}$ production cross section (2009 data)
- $-\overline{\Lambda}/\Lambda$ production ratio (2010 data)

□ First exciting look and prospects

- open charm
- quarkonium
- open beauty
- other beast

Summary

LHCb detector status and performance given in plenary talk by A. Golutvin (+ F. Maciuc, D. Wiedner, P. Xing)

Details will be given in parallel sessions:

W. Bonivento minimum bias

J. Marksopen charmJ. CoganJ/ψ productionJ. Serranorare decays with dimuonsG. ContiCP violation in B decays

Two approaches to New Physics search

- New Physics (NP) models introduce new particles at the TeV scale or above, which could
 - be produced and observed directly as
 real particles with specific signatures

appear as virtual particles in loop processes, leading to observable deviations from

the pure Standard Model expectations

□ TeV scale accessible at LHC:

— "direct" and "indirect" approaches are complementary and both needed

Physics at LHC 2010, DESY

Direct searches in high p_T physics (mostly ATLAS & CMS)

Indirect searches in flavour physics (mostly LHCb)

Strengths of indirect approach

□ Can access higher scales and therefore see effect earlier:

- Third quark family inferred by Kobayashi and Maskawa (1973) to explain small CP violation measured in kaon mixing (1964), but only directly observed in 1977 (b) and1995 (t)
- Neutral currents (ν +N \rightarrow ν +N) discovered in 1973, but real Z discovered in 1983

□ Can access the phases of the new couplings:

— NP at TeV scale needs to have a "flavour structure" to provide the suppression mechanism for already observed FCNC processes → once NP is discovered, it is important to measure this structure (including new phases)

Strategy for indirect NP search ^{in B}_{physics}

❑ Measure FCNC transitions where New Physics is more likely to emerge, especially in b→s transitions which are less constrained by current data — Operator Product Expansion:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu)O_i(\mu)}_{ieft-handed part} + \underbrace{C'_i(\mu)O'_i(\mu)}_{right-handed part} \right] \begin{bmatrix} i=1,2 & Tree \\ i=3-6,8 & Gluon penguin \\ i=7 & Photon penguin \\ i=9,10 & Electroweak penguin \\ i=S & Higgs (scalar) penguin \\ i=P & Pseudoscalar penguin \end{bmatrix}$$

- modify $C_i^{(')}$ short-distance Wilson coefficients
- add new long-distance operators $O_i^{(')}$

- e.g. probe helicity structure in $b \rightarrow s\gamma$ and $b \rightarrow s\mu\mu$

Single B decay measurements with NP discovery potential

□ Improve measurement precision of CKM elements

- Compare measurements of same quantity, which may or may not be sensitive to NP
- Extract all CKM angles and sides in many different ways
 - any inconsistency will be a sign of New Physics

Precision CKM metrology, including NP-free determinations of CKM angle γ

LHCb "core" physics

Selected key measurements:

- Search for $B_s \rightarrow \mu\mu$
- Mixing-induced CP violation in $B_s \rightarrow J/\psi \phi, B_s \rightarrow \phi \phi, ...$
- Charmless 2-body B decays
- CKM angle γ from tree-level B decays
- $-B_s \rightarrow \phi \gamma$ and other radiative B decays
- Asymmetries in $B^0 \rightarrow K^*l^+l^-$ decays

Roadmap:

- LHCb-PUB-2009-029, arXiv:0912.4179v2 [hep-ex], Feb 2010
- Main assumptions:
 - 2 fb⁻¹ per year (=10⁷ s), 25 ns bunch crossing
 - $\sqrt{s} = 14 \text{ TeV}, \ \sigma_{bb} = 500 \ \mu b$

Day 1 at 7 TeV

pp collision at 3.5+3.5 TeV, March 30, 2010

Charged track acceptance

□ 7 TeV data (~10M events):

- use "micro-bias" trigger: at least one charged track seen in the detector
- select events with one reconstructed primary vertex (PV)
- look at raw distribution of charged tracks traversing VELO and tracking stations (i.e. with well measured p)
 - illustrative of LHCb acceptance

Eventually:

 MC will need to be tuned to reproduce minimum bias data (but not crucial for core physics program)

2010–2011 run at 7 TeV

Beam energy at half of design value

- bottom and charm production cross sections (from PYTHIA 6.4) divided by ~ 2
 - no dramatic effect on physics reach
- Most previous MC predictions assumed $\sigma_{bb} = 0.5$ mb anyway

Design luminosity for LHCb: 2×10³² cm⁻² s⁻¹ on average

- expected to be reached in 2011
- lower luminosities in 2010 allow for lower trigger thresholds

LHCb trigger scheme

Kick Trigger strategy for first data

Interaction rate	L0 output rate	HLT1 output rate	HLT2 output rate
< 2 kHz	< 2 kHz		
< 25 kHz	< 25 kHz	2 kHz	
< 300 kHz	< 300 kHz	10 kHz	2 kHz

No real rate reduction at L0, so far (minimum bias trigger + random trigger)
 Running HLT1 in rejection mode since ~2 weeks

□ First physics results = production measurements !

- strangeness, charm, bottom, ...

Luminosity determination is needed to turn results into cross sections

- direct methods (measurements of the beam themselves):
 - e.g. beam imaging using beam-gas interactions
 - expect 5–10% precision by end 2010

M. Ferro-Luzzi, NIM A 553 (2005) 388

- indirect methods (measurements of physics process with known cross section)
 - e.g. quasi-elastic dimuon production via two-photon fusion (pp \rightarrow ppµµ)

- expect $\sim 2\%$ precision by end 2011

Used 2009 pilot run data at $\sqrt{s} = 0.9$ TeV to demonstrate feasibility of absolute cross section measurement:

 measurement of prompt K_S production cross section with luminosity obtained from beam-gas method

Luminosity with 2009 data

Luminosity for N pairs of colliding bunches:

 $L = f \sum_{i=1}^{N} \frac{n_{1i} n_{2i}}{4\pi \sigma_{xi} \sigma_{yi}} \int_{x_{i}}^{f = 11.246 \text{ kHz} = \text{revolution frequ.}} n_{1i}, n_{2i} = \text{number of protons in bunch 1, 2} \\ \sigma_{xi}, \sigma_{yi} = \text{transverse bunch sizes (Gaussian)}$

- some refinement needed to above formula because colliding bunches:
 - may differ in transverse sizes, may collide with an offset, and cross at a small angle (2 mrad, due to LHCb dipole field)

Idea:

- get the bunch currents from machine measurements (BCT)
- measure (with VELO) beam sizes, positions and angles using beam-gas interactions:

Luminosity with 2009 data

Vertex resolution significant, need to deconvolute

— example: transverse profiles measured in y for one pair of bunches (red = observed, green = resolution, yellow = after deconvolution)

Measured luminosity for good runs used in K_S analysis:

 L_{int} (2009) = 6.8 ± 1.0 µb⁻¹

Dominated by systematic uncertainties:

Currents	Widths	Positions	Angles
12%	5%	3%	1%

Kick Prompt K_S production (2009)

- □ Reconstruct $K_S \rightarrow \pi^+\pi^-$ pointing back to primary vertex (PV), in bins of p_T and rapidity y:
 - beam-gas substracted,
 - background-subtracted
 - efficiency corrected using MC tuned/reweighted to the data
- **DD** analysis:
 - use only downstream (D) tracks with hits in TT and T, ignore VELO info
 - pseudo-PV determined from K_S direction and beam axis

LL analysis:

- use only long (L) tracks with VELO hits
- PV determined from reconstructed tracks

Statistically most precise analysis:

- $-K_{\rm S}$ long-lived
- VELO retracted by 15 mm from its nominal closed position
- (large beam sizes and crossing angle)

Clean and high-resolution signal + extend reach at low p_T and y

+ PYTHIA 6

diffraction

0.8

1.2

1

1.4

p_{_} (GeV/c)

0.6

0.2

0.4

Ñ

Kack 2010 data: zoo expanding rapidly

Prompt $\overline{\Lambda}$ and Λ production

P. Skands, http://home.fnal.gov/~skands/leshouches-plots/

Production ratio interesting to study baryon transport:

— models disagree, but predict dependence vs η and vs \sqrt{s}

LHCh

Use only long tracks in 2010 data recorded with "microbias" trigger

$\overline{\Lambda}/\Lambda$ production ratio

Efficiency corrected ratio, in rapidity bins:

□ Check: measurement of D⁰ lifetime

- make very pure $D^0 \rightarrow K^-\pi^+$ selection (S/B ~ 22)

- proper-time distribution with simple exponential
- use only tail, where efficiency is constant
 - $\tau(D^0) = 0.398 \pm 0.026$ ps (6.5% stat. precision)
 - result does not depend on where the fit starts and agrees with the known D⁰ lifetime of 0.4101 ± 0.0015 ps

D⁰ mixing measurements

- expect > $10 \times BABAR$ statistics in 0.1 fb⁻¹

□ Mixing through lifetime difference:

$$y_{CP} = \frac{\tau \left(D^0 \rightarrow K^- \pi^+ \right)}{\tau \left(D^0 \rightarrow K^- K^+ \right)} - 1$$

 \Box CP-violating observable A_{Γ} : $A_{\Gamma} = \frac{\tau(\overline{D}^{0} \to K^{-}K^{+}) - \tau(D^{0} \to K^{+}K^{-})}{\tau(\overline{D}^{0} \to K^{-}K^{+}) + \tau(D^{0} \to K^{+}K^{-})}$

Time-dependent analysis of wrong-sign tagged $D^0 \rightarrow K\pi$ decays:

- interference between DCS decays and mixing+ CF decays (mixing parameters y'and x'^2)

Kick Search for direct CPV in charm

□ Interesting modes are:

- singly Cabibbo-suppressed decays, where NP may enter in gluonic Penguin
- 3-body decays, where Dalitz plot analysis allows for many local CP asymmetries to be probed

□ D⁺ → K⁺K⁻ π ⁺ is an excellent candidate:

- use Cabibbo-favoured $D_s^+ \rightarrow K^+K^-\pi^+$ and $D^+ \rightarrow K^+\pi^-\pi^+$ decays as control channels

 expect several million events in 0.1 fb⁻¹ (an order of magnitude more than B-factory samples)

Studies with $J/\psi \rightarrow \mu^+\mu^-$

5 MeV/c²)

Events

700

600

500

400

300

200Ē

Abundant J/ψ signal = gold mine:

- data-MC and data-PDG differences (in bins of many variables) provide many crucial calibration handles, to be exploited to improve performance:
 - alignment, tracking studies
 - material effects (dE/dx)
 - B-field systematic effects
 - momentum resolution, mass scale
 - lepton identification

 \Box J/ ψ , ψ (2S), ... signals open large parts of the physics program:

- quarkonium production, polarization, spectroscopy, ...
- bottom physics with both incl. and excl. b \rightarrow J/ ψ modes

Kack J/ψ production measurement

In each bin of J/ ψ phase space (p_T and y):

Extract differential production cross sections:

- prompt J/ ψ very interesting in its own right:
 - colour-octet model predicts well cross sections seen at Tevatron, but not polarisation
- make first measurement of $b \rightarrow J/\psi$ production:
 - important for initial tuning of b spectrum in LHCb Monte Carlo

5/5/10

Asymmetric distribution with clear long-lived signal from b-hadron decays

- \Box In each p_T or y bin, J/ ψ yield extracted from mass distribution
 - shown before any correction (e.g. efficiency correction)
 - spectrum contains prompt J/ ψ and b \rightarrow J/ ψ

- above is illustrative of the capability, measurement expected soon

Looking for b hadrons: D⁰ IP

Largest b-hadron signal so far !

 $B \rightarrow D^0 \mu^- \nu X$

- □ Form right-sign $D^0\mu^-$ combinations:
 - fit D^0 IP distribution:
 - 14.0 ± 1.9 non D⁰ background (shape from D⁰ mass sideband)
 - 16.2 ± 5.7 prompt D⁰ (shape from data)

- □ Form wrong-sign $D^0\mu^+$ combinations:
 - fit D^0 IP distribution:
 - 10.2 ± 1.5 non D⁰ background (from D⁰ mass sideband)
 - 16.7 ± 4.9 prompt D⁰ (shape from data)

- □ Large branching fraction, suitable for early cross section measurement:
 - with 100 nb⁻¹, expect 2.8k B \rightarrow D⁰ μ ^{- ν}X signal events with good purity
 - measurement complementary to $b \rightarrow J/\psi$ result

$\square B_d \rightarrow D^- \mu^+ \nu \text{ and } B_s \rightarrow D_s^- \mu^+ \nu \text{ decays useful for:}$

- B_d and B_s oscillations (Δm_d and Δm_s), flavour tagging studies and calibration
- CP violation in B_d and B_s mixing:
 - measurement of $\Delta A_{fs} = (a_{fs}(B_s) a_{fs}(B_d))/2$ where detector asymmetry will be drop out if D⁻ and D_s⁻ to same K⁺K⁻\pi⁻ final state
 - will provide constraint "orthogonal" to recent D0 measurement of $A_{sl}^{\ b} \sim (a_{fs}(B_s) + a_{fs}(B_d))/2$
 - expect statistical precision on ΔA_{fs} of 2 × 10⁻³ (similar to that of D0 on A_{sl}^{b}) from MC study assuming 0.1 fb⁻¹ and $\sigma_{bb} = 500 \ \mu b$

Fully reconstructed B

$B^+ \rightarrow J/\psi K^+$ candidate

All observables far from cut values defined before data-taking

$\frac{WC}{V}$ Exclusive $B \rightarrow J/\psi X$ selections

 $\sim 13 \text{ nb}^{-1}$

 $B_s \rightarrow J/\psi \phi$

 $B^0 \rightarrow J/\psi K^{*0}$

(J/ψ mass constraint applied)

Kick Mixing-induced CPV in $B_s \rightarrow J/\psi\phi$

- □ Golden mode $B_s \rightarrow J/\psi \phi$ is strange counterpart of $B^0 \rightarrow J/\psi K^0$
 - phase $2\beta_s$ can be accessed with $B_s \rightarrow J/\psi \phi$ in the same way as 2β with $B^0 \rightarrow J/\psi K^0$
- □ Phase $2\beta_s$ small in SM, hence very sensitive to NP contributions:
 - $-2\beta_{s} = 0.036 \pm 0.002 \text{ rad (SM)}$
 - Some NP models predict large phase $\phi_s(J/\psi\phi) \neq -2\beta_s$

LHCb expectation:

— With 1 fb⁻¹ and full time and angular analysis of flavour-tagged $B_s \rightarrow J/\psi \phi$ decays:

 $\sigma(\phi_{\rm s}(J/\psi\phi)) \sim 0.07$

- Pure CP modes can be added, e.g. $B_s \rightarrow J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$

LHCD

Exclusive hadronic B decays

N_{Signal}

σ_{Gauss}

5500

mັື

□ First signal combining two modes: $-B^{0} \rightarrow D^{+}\pi^{-}$ $-B^{+} \rightarrow D^{0}\pi^{+}$

Expect soon:

 $-B_s \rightarrow D_s \pi^-$

 $-B \rightarrow DK$ Cabibbo-suppressed modes

Events //22 MeV/c²

20

18

16

LHCb

~ 13 nb⁻¹

Preliminary

5000

√s = 7 TeV Data

□ Main physics goal:

- « New Physics free » determination of CKM angle γ using interference between b→c and b→u tree-level diagrams in $B_{(s)} \rightarrow D_{(s)}K$
- combined precision expected with 1 fb⁻¹:

 $\sigma(\gamma) \sim 7$ degrees

22.9

12

+5.3

± 2.5 MeV

5260.5 ± 3 MeV

$B_s \rightarrow \mu\mu$

But main issue is background rejection ...

$B_s \rightarrow \mu\mu$

Quoted sensitivity relies on MC

- MC compared with data where possible:
 - muon misID checked with true pions and protons from K_s and Λ
 - dimuon combinatorial checked with background in $J/\psi \rightarrow \mu^+\mu^-$ selection
 - mass resolutions studied with available mass peaks
 - separation power of geometrical variables (e.g IP significance) checked with 2-body K_S and D⁰ decays
- All checks performed so far indicate that sensitivity obtained from MC is realistic

0.1 fb⁻¹ \Rightarrow improve on current Tevatron limit 1 fb⁻¹ \Rightarrow exclude BR values down to 7×10⁻⁹ or observe 5 σ signal with BR = 3.5 × SM

(Need 10 fb⁻¹ at 14 TeV for 5σ observation of SM signal)

Electroweak boson production

LHCb coverage:

- interesting pseudo-rapidity region where W⁺/W⁻ ratio varies rapidly
- small y overlap with ATLAS/CMS
- unique area of (Q^2, x) plane

Measurements of interest:

- $-Z^0/W^{\pm}$ ratio
 - precisely predicted (< 1%)
 - should aim at 1% measurement with 0.1 fb⁻¹ → test SM
- $-W^+/W^-$ ratio
 - sensitive to u/d ratio
- W, Z production cross sections
 - can constrain PDFs, down to $\sim 6 \times 10^{-4}$ at $\sqrt{s} = 7$ TeV

$W \rightarrow \mu\nu$ selection

W⁺ $\rightarrow \mu^+ \nu$ candidate

 $\eta = 2.51$ $p_T = 35.4 \text{ GeV/c}$ $A_{pT} = 0.92$

Summary

□ LHCb will deploy its core physics within next year with the first fb⁻¹:

- Lower \sqrt{s} for 2010–2011 run not a big penalty
- At low luminosity, take opportunity to give more trigger bandwidth to charm
- □ Initial production measurements:
 - Absolute K_s production cross section at 0.9 TeV
 - $-\overline{\Lambda}/\Lambda$ production ratio at 0.9 and 7 TeV
 - very soon:
 - prompt J/ψ , b $\rightarrow J/\psi$, B $\rightarrow D^0\mu X$
 - charm and bottom hadrons in fully reconstructed modes
- □ Indirect New Physics searches at LHCb:
 - several highly-sensitive physics observables in B and D sectors, accessible with data from 2010–2011 run
 - active preparation using existing calibration/control signals while looking forward to more statistics !