Higgs Measurements in and beyond the SM at the LHC in the Forward Proton Mode

Sven Heinemeyer, IFCA (CSIC, Santander)

DESY Hamburg, 06/2010

based on collaboration with V.A. Khoze, M. Ryskin, M. Tasevsky, G. Weiglein

- 1. Introduction
- 2. MSSM analysis update
- 3. Determination of spin and \mathcal{CP} properties
- 4. 4th generation model
- 5. Conclusions

1. Introduction

 $pp \rightarrow p \oplus H \oplus p, \quad H \rightarrow b\overline{b}, \tau^+\tau^-, W^+W^-, \dots$ (protons remain intact)

The LHC will find a SM-like Higgs and measure its characteristics:

- mass: $\delta M_h \approx 200 \text{ MeV}$
- couplings: (2 * 300 + 2 * 100) fb⁻¹ : typical: 20-30% for $m_H \le 150$ GeV 10% accuracies for HVV couplings above WW threshold

Assumption:

$$-g_{HVV}^2 \leq g_{HVV,\mathsf{SM}}^2 imes 1.05$$

SM rates for the Higgs

Problem: $Hb\overline{b}$ crucial!

 $Hb\bar{b}$ situation unclear:

old:
$$t\overline{t}H, H \rightarrow b\overline{b}$$

signal shape \approx background shape

 \Rightarrow no longer viable

new: $WH, H \rightarrow b\overline{b}$ (boosted)

 \Rightarrow up to \sim 3.5 σ possible?

 \Rightarrow other possibilities for $Hb\overline{b}$?

Some details ($\phi = h^{\text{MSSM}}, H^{\text{MSSM}}, H^{\text{4th gen}}$):

- 1. Proton detection: in Forward Proton Taggers at 220 m, 420 m
- 2. Higgs decay: (here only) $\phi \rightarrow b\overline{b}$ two high $p_T \ b$ jets, measured in ATLAS or CMS
- 3. Trigger to keep signal (2): "cocktail" of triggers: FP @ 220m, high p_T jets, high p_T leptons, ...
- 4. Identification of signal: (1) and (2) have to match in mass
- **5.** Cross section calculation: $\sigma_{SM} \times \frac{\Gamma(gg \rightarrow \phi)_{NP}}{\Gamma(gg \rightarrow H)_{SM}}$
- 6. Decay calculation: $BR_{NP}(\phi \rightarrow b\overline{b}) \Rightarrow FeynHiggs$ (MSSM: incl. Δ_b dep.) advantage over SM: possibly enhanced decay rates
- 7. Backgrounds:

taken into account according to recent analyses/ best available estimates

\Rightarrow 5 σ discovery contours, 3 σ significance sensitivities

Four luminosity assumptions:

60 fb⁻¹: $\mathcal{L} = 2 \times 30$ fb⁻¹: three years of low-luminosity running

60 fb⁻¹ eff \times 2:

as "60", but assuming an improvement in signal efficiency etc. effectively: signal rates doubled

600 fb⁻¹: $\mathcal{L} = 2 \times 300$ fb⁻¹: three years of high-luminosity running

 $600 \text{ fb}^{-1} \text{ eff} \times 2$: as "600", but assuming an improvement in signal efficiency etc. effectively: signal rates doubled

2. MSSM analysis update

Enlarged Higgs sector: Two Higgs doublets

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} v_1 + (\phi_1 + i\chi_1)/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ \psi_2 + (\phi_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm} Goldstone bosons: G^0, G^{\pm} Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

Update with respect to 2007 analysis:

- Update of background estimates: NLO for $gg \rightarrow b\overline{b}$
- Update of LEP and Tevatron exclusion bounds
 - \Rightarrow HiggsBounds [B. Bechtle, O. Brein, S.H., G. Weiglein, K. Williams '08]
- Update of σ and BR calculation
 - \Rightarrow FeynHiggs [T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '98 '10]
 - \rightarrow small changes in Δ_b , $gg \rightarrow h$ improved
 - (still working on further $gg \rightarrow h$ improvement, possibly large impact!)

MSSM scenarios:

- "normal" benchmarks: m_h^{max} , no-mixing ($\mu = +200 \text{ GeV}$)
- CDM benchmarks: M_A -tan β planes in agreement with CDM [J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07] \rightarrow backup

Results for h in the m_h^{max} scenario:

5σ discovery

pink: Tevatron exclusion bounds
blue: LEP exclusion bounds

⇒ large parts can be covered at $3\sigma!$ ⇒ access to $hb\bar{b}$ coupling?!

Results for H in the m_h^{max} scenario:

 5σ discovery

 3σ sensitivity

pink: Tevatron exclusion bounds
blue: LEP exclusion bounds

⇒ large discovery regions, but no "LHC wedge" coverage →backup ⇒ access to $Hb\bar{b}$ coupling?! 5σ discovery

pink: Tevatron exclusion bounds
blue: LEP exclusion bounds

⇒ large parts allowed by CDM can be covered at $3\sigma!$ ⇒ access to $hb\bar{b}$ coupling? (5 σ slightly worse than in m_h^{max})

 5σ discovery

 3σ sensitivity

pink: Tevatron exclusion bounds blue: LEP exclusion bounds

⇒ large discovery regions, but no "LHC wedge" coverage ⇒ access to $Hb\bar{b}$ coupling? (slightly better than in m_h^{max})

3. Determination of spin and CP properties

Existing analyses for the LHC:

rely largely on the coupling of the Higgs to heavy gauge bosons:

$$(gg,) WW \to H \to ZZ \to 4\ell$$
$$(gg,) WW \to H \to WW \to \ell\nu \ \ell\nu$$
$$WW \to H \to \tau^+\tau^-$$

 $(gg \rightarrow H \text{ as background})$

Needed for these SM(-like) analyses: a Higgs with

- a sufficiently large $HV_{\mu}V^{\mu}$ coupling i.e. no large suppression with respect to the SM value
- a sufficiently large $\mathsf{BR}(H \to VV)$

 $\Rightarrow M_H \gtrsim 140~{\rm GeV}$ to suppress $H \rightarrow b \overline{b}$

- possibly a large $BR(H \rightarrow \tau^+ \tau^-)$

SM analyses for the structure of the $HV_{\mu}V^{\mu}$ coupling:

 \mathcal{CP} -even vs. \mathcal{CP} -odd

[T. Plehn, D. Rainwater, D. Zeppenfeld '01] (theory)
[V. Hankele, G. Klämke, D. Zeppenfeld '06] (theory)
[C. Ruwiedel, M. Schumacher, N. Wermes '07] (experimental)

Problem: Assumption often made:

 $H^{\mathcal{CP}-\mathsf{even}}V_{\mu}V^{\mu}$ has the same strength as $H^{\mathcal{CP}-\mathsf{odd}}V_{\mu}V^{\mu}$

MSSM:

$$\frac{H^{\mathcal{CP}-\text{odd}}V_{\mu}V^{\mu}}{H^{\mathcal{CP}-\text{even}}V_{\mu}V^{\mu}} \approx 10^{-11}$$

Higgs coupling structure determination?

[*C. Ruwiedel, M. Schumacher, N. Wermes '07*] \Rightarrow explore $HW_{\mu}W^{\mu}$ coupling

 $M_H = 160 \text{ GeV}$ $\Rightarrow BR(H \rightarrow WW)$ is maximal

 $H \to WW \to e\mu \ p_T^{\mathsf{miss}}$

Two extreme cases: CP-even and -odd tensor structures (assumed to have the same strength!)

 $\Rightarrow {\rm discrimination} {\rm ~at} \sim 5 \, \sigma \\ {\rm possible} {\rm ~with} {\rm ~10} {\rm ~fb^{-1}}$

Situation in MSSM: *

Light Higgs: $M_h \lesssim 135 \text{ GeV}$

 \Rightarrow light Higgs h has too small BR $(h \rightarrow VV^{(*)})$

Heavy Higgses:

$$g_{hVV} = g_{HVV}^{SM} \times \sin(\beta - \alpha)$$

$$g_{HVV} = g_{HVV}^{SM} \times \cos(\beta - \alpha)$$

$$g_{AVV} = 0$$
 at tree-level

 $M_H \approx M_A \gtrsim$ 150 GeV:

 $\Rightarrow \beta - \alpha \rightarrow \pi/2$ $\Rightarrow h \text{ has substantial } VV \text{ coupling}$

 \Rightarrow H and A have negligible VV coupling

 \Rightarrow no heavy Higgs with substantial coupling to VV in the MSSM \Rightarrow method relying on $H \rightarrow VV$ cannot be applied

* α diagonalizes the neutral $\mathcal{CP}\text{-}\mathrm{even}$ Higgs sector

Higgs coupling structure determination in $WW \rightarrow H \rightarrow \tau^+ \tau^-$

[*C. Ruwiedel, M. Schumacher, N. Wermes '07*] \Rightarrow explore $HV_{\mu}V^{\mu}$ coupling

 Φ_{jj} : angle between the two tagging jets

 $M_H = 120 \text{ GeV}$ exploiting $WW \rightarrow H \rightarrow \tau^+ \tau^- \rightarrow \ell \ell 4 \nu$

Two extreme cases: \mathcal{CP} -even and -odd tensor structures

 \Rightarrow discrimination at $\sim 2\sigma$ possible with 30 fb⁻¹

Situation in MSSM: *

$$g_{hVV} = g_{HVV}^{SM} \times \sin(\beta - \alpha)$$

 $g_{HVV} = g_{HVV}^{SM} \times \cos(\beta - \alpha)$
 $g_{AVV} = 0$ at tree-level

 $M_H \approx M_A \gtrsim 150 \text{ GeV} \Rightarrow M_h \lesssim 135 \text{ GeV} (M_h \approx 120 \text{ GeV} "easy")$ $\Rightarrow h$ has substantial VV coupling but no (sufficient) $h \rightarrow \tau^+ \tau^-$ enhancement

 $M_H \approx M_A \lesssim 130 \text{ GeV} \Rightarrow |\sin(\beta - \alpha)| \ll 1 \text{ possible}$ $\Rightarrow H \text{ has substantial } VV \text{ coupling}$ but no (sufficient) $H \rightarrow \tau^+ \tau^-$ enhancement

 \Rightarrow no improvement with respect to SM analysis

 * α diagonalizes the neutral $\mathcal{CP}\text{-}\mathrm{even}$ Higgs sector

Situation in other models beyond the SM:

<u>If:</u>

- Higgs sector consists of doublets and singlets
- one has one light SM-like Higgs, $M_H^{\rm SM-like} \lesssim 140~{
 m GeV}$

then:

- $BR(H^{SM-like} \rightarrow VV^{(*)})$ is too small
- the following sum rule for the New Physics (NP) Higgs couplings holds:

$$\sum_{i} (g_{H_iVV})^2 = (g_{HVV}^{\mathsf{SM}})^2$$

Since the light Higgs is SM like all other Higgses have small H_iVV coupling

 $H \to VV^{(*)}$: method cannot be applied $H \to \tau^+ \tau^-$: large enhancement of $\Gamma(H \to \tau^+ \tau^-)$ needed ... $pp \rightarrow p \oplus H \oplus p$

protons remain intact

 \Rightarrow the primary active di-gluon system obeys a

 $J_z = 0$, CP-even selection rule

 $(J_z$ is the projection of the total angular momentum along the proton beam axis)

 \Rightarrow permits a clean determination of the quantum numbers of the observed Higgs

Further advantage:

leading order $gg^{PP} \rightarrow b\bar{b}$ QCD background subprocess have to vanish in the limit of massless quarks and forward outgoing protons

Corresponding MSSM advantage: $h, H \rightarrow b\overline{b}$ enhanced!

4. 4th generation model

Assume the SM with a 4th generation of heavy fermions Relevant changes:

1. additional contribution to $gg \to H$:

 \Rightarrow factor of ~ 9 in Higgs production cross section

- 2. \Rightarrow factor of ~ 9 in $\Gamma(H \rightarrow gg)$
 - \Rightarrow reduced BR($H \rightarrow b\overline{b}$), BR($H \rightarrow \tau^+ \tau^-$)

Evaluation of SM quantities with FeynHiggs subsequent application of reduction and enhancement factors

LEP and Tevatron limits for 4th generation model

[P. Bechtle, O. Brein, S.H., G. Weiglein, K. Williams '08]

[CDF, DØ '10]

 \Rightarrow only 112 GeV $\lesssim M_H \lesssim$ 130 GeV, $M_H \gtrsim$ 210 GeV still allowed \Rightarrow will be tested very soon by the Tevatron

5. Conclusions

• CED Higgs production

 $pp \rightarrow p \oplus \Phi \oplus p, \quad \Phi \rightarrow b\overline{b}, \tau^+\tau^-, W^+W^-$

- extended discovery reach (in BSM models)?
- new handle for bottom Yukawa coupling: y_b
- CED production of MSSM Higgs bosons:

update of 2007 analysis:

- background: NLO for $gg \to b\overline{b}$
- LEP/Tevatron exclusion bounds (HiggsBounds)
- theory calculation (FeynHiggs)
- new CDM benchmark planes
- \Rightarrow at very high luminosity: good chances for $hb\bar{b}$ coupling
- \Rightarrow possibly access to $Hb\overline{b}$ coupling
- CED production of 4th generation Higgs boson:

LEP/Tevatron searches: 112 GeV $\lesssim M_H \lesssim$ 130 GeV still allowed

- \Rightarrow good chances for $H \rightarrow b\overline{b}$ already at low luminosity
- \Rightarrow good chances for $H \rightarrow \tau^+ \tau^-$ at high luminosity

Back-up

Higgs production cross sections at the Tevatron:

SM

MSSM

MSSM: possibly enhanced rates at high $\tan \beta$

Higgs production cross sections at the LHC:

SM

MSSM

MSSM: possibly enhanced rates at high $\tan \beta$

"Heavy" MSSM Higgs searches:

MSSM Higgs discovery contours in M_A -tan β plane $(m_h^{\text{max}} \text{ benchmark scenario})$: [ATLAS '99] [CMS '03]

Where can the heavy Higgses be observed? With which precision?

The Charged MSSM Higgs boson and CDM benchmarks

[J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

NUHM: (Non-universal Higgs mass model)

 \Rightarrow besides the CMSSM parameters (m_0 , $m_{1/2}$, A_0 , tan β)

 M_A and μ

Assumption:

no unification of scalar fermion and scalar Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ free parameters at the EW scale

 \Rightarrow particle spectra from renormalization group running to weak scale

Lightest SUSY particle (LSP) is the lightest neutralino

 \Rightarrow possible: M_A -tan β planes in agreement with CDM :-)

 $\Rightarrow M_A$ -tan β planes in agreement with CDM possible!

Also in agreement with other constraints from electroweak precision observables and *B* physics observables:

 $\Rightarrow \chi^2$ test with:

- 1. W boson mass M_W
- 2. effective leptonic weak mixing angle $\sin^2 \theta_{eff}$
- 3. total Z boson width Γ_Z
- 4. lightest Higgs boson mass M_h
- 5. anomalous magnetic moment of the muon $(g-2)_{\mu}$
- 6. *b* decay $\mathsf{BR}(b \to s\gamma)$
- 7. *b* decay $BR(B_s \rightarrow \mu^+ \mu^-)$
- 8. *b* decay $BR(B_u \rightarrow \tau \nu_{\tau})$
- 9. B_s mixing ΔM_{B_s}

⇒ good χ^2 (M_W , sin² θ_{eff} , Γ_Z , M_h , (g-2) $_\mu$, BR($b \rightarrow s\gamma$) and other BPO) ⇒ larger regions o.k.