

Performance of the CMS Muon Spectrometer, Muon Reconstruction and Identification Performance

Luca Scodellaro

Instituto de Fisica de Cantabria - CSIC On behalf of the CMS Collaboration

Physics at the Large Hadron Collider 2010 June 7th-12th, 2010 DESY, Hamburg (Germany)

Outline

- Overview of the CMS muon spectrometer
 - Detector design and performance with cosmic ray muons
- Performance of muon reconstruction in cosmic ray events
 - Muon reconstruction and identification
 - Comparison data Monte Carlo
 - Efficiency and resolution
 - Charge assignment
 - □ High Level Trigger
- Measurement of the charge asymmetry of atmospheric muons
 □ First physics result with the CMS muon spectrometer
- Results with collisions data
 - First candidate display events and dilepton resonances
- Conclusions

The CMS Muon Spectrometer

• Purposes of the CMS muon spectrometer:

- Muon identification
- □ Muon momentum measurement (~1 % at p_T~100 GeV, ~10% at 1 TeV, using tracker information)
- □ Muon triggering
- Three technologies of gaseous detectors:
 - Barrel: 5 wheels (|η|<1.2)
 Drift Tube chambers (DT)
 Resistive Plate Chambers (RPC)
 - □ Endcap: 4 disks per side $(|\eta| < 2.4)$ Cathode Strip Chambers (CSC) RPC (up to $|\eta| < 1.6$)
- All detectors used both for triggering and reconstruction

Barrel: Drift Tube Chambers (DT)

- 250 chambers arranged in 5 wheels, each with 4 stations forming concentric cylinders
 ~172k read out channels
- Chambers made of staggered cell layers:

 Two sets of 4 layers measure the bending coordinate rφ with ~100 µm precision
 A set of 4 layers measure the z (θ) coordinate (only for the three innermost stations)
- Trigger on track segments with bunchcrossing identification at level 1

Gas mixture: Ar/CO_2 (85/15)% Almost uniform drift velocity $V_d \sim 55 \ \mu m/ns$ Maximum drift time ~380 ns Cell resolution ~200 μm

DT Performance with Cosmic Rays

- Hit reconstruction efficiency greater than 98% over a large part of drift volume
 Segment reconstruction efficiency >99%
- Resolution on hit position $\sim 260 \ \mu m$
- Level 1 trigger efficiency reaches 95% for muon tracks in the fiducial volume

Endcaps: Cathode Strip Chambers (CSC)

- 468 chambers arranged in 4 disks per endcap
 1, 2 or 3 rings per disk
 18, 36 or 72 chambers per ring
- Chambers composed by 6 gas gaps with a layer of staggered cathode strips and one of anode wires
 □ Trapezoidal in shape and overlapped in φ
 □ Gas mixture: Ar/CO₂/CF₄ (40/50/10)%
- Bending coordinate φ measured by strip centroid
 Design resolution per chamber ~150 μm
 75 μm for chambers in the innermost ring
- Wire layers' signal:
 - Radial coordinate measurement
 - □ Fast response for bunch-crossing identification

CSC Performance with Cosmic Rays

- Reconstruction efficiencies for hits and segments above 99%
- $R\phi$ resolution per chamber computed to range between 47 and 243 μm
 - \Box 1/ $\sigma^2_{\text{chamber}} = 3/\sigma^2_{\text{hit}_{edge}} + 3/\sigma^2_{\text{hit}_{center}}$
- Level 1 trigger efficiency greater than 99% in both endcaps for muons of $p_T > 20 \text{ GeV/c}$

Resistive Plate Chambers (RPC)

- Barrel: 480 chambers
 5 wheels with 6 concentric stations
- Endcap: 432 chambers

 3 stations/endcap covering up to |η|<1.6</p>
- Double gap in avalange mode

 Cope with hit rate up to 1 KHz/cm²
 Gas mixture: C₂H₂F₄/iso-C₄H₁₀/SF₆ (96.2/3.5/0.3)%
- Strips measure bending coordinate
 Resolution ~1 cm
- Fast response; time resolution ~2ns
 Unambiguous bunch-crossing identification at level 1

RPC Performance with Cosmic Rays

- Typical detection efficiency ~90%
- Spatial resolution ~1.1 cm
 0.89 cm for innermost barrel station
- Level 1 trigger efficiency between 80 and 90% for muons in the fiducial volume

Muon Reconstruction and Identification

- Main muon reconstruction algorithms at CMS:
 - Standalone muons: only information from muon chambers used in the fit
 - □ <u>Global muons</u>: combined fit to hits in the muon system and in the inner silicon tracker
- Alternative approaches apply selections or cuts on the hits on muon chambers

- Muon identification at CMS:
 - □ Tracker track extrapolated to muon system
- Requirements applied to select muon candidates
- Two main sets of requirements studied:
 - Compatibility: based on calorimeter and muon system information
 - □ <u>LastStation</u>: well matched segments in last station

Cosmic Muon Reconstruction

- Cosmic Run At Four Tesla (CRAFT):
 270 million events collected in Oct. 2008
 Full detector operative
 Nominal magnetic field
- Cosmic rays offer many handles to probe muon system performance:
 - Redundancy of track algorithms
 - Comparison of top and bottom legs of a single cosmic muon
 - I -leg fit of top and bottom sectors together: best possible resolution

Data-Monte Carlo Comparison

Efficiency

Tag&Probe method:

In Muon tagged in one detector hemisphere and probed in the opposite

- To test standard LHC algorithms, use collision-like cosmics
 □ Minimal distance to the interaction point: r<4 cm, Δz<10 cm
- Standalone muon efficiency: tag from good quality tracker tracks
 Good agreement between data and simulation

Momentum Resolution

- Using 2-legs collision-like muons
- Relative q/p_T residual:

 $R(q/p_{\rm T}) = \frac{(q/p_{\rm T})^{\rm top} - (q/p_{\rm T})^{\rm bottom}}{\sqrt{2(q/p_{\rm T})^{\rm bottom}}}$

- Widths of $R(q/p_T)$ distribution for:
 - Tracker tracks
 - Global muons
 - Tracker Plus First Muon Station fit
 - Truncated Muon Reconstructor: best between tracker and TPFMS fits

Muon Charge Assignment

• The rate of charge mis-assignment is measured by the fraction of times the charges in the top and bottom legs of a muon disagree

• Crucial effect at high p_T when the muon trajectory is nearly straight

Muon High Level Trigger

- Three level 3 algorithms using different seeds:
 <u>Inside-Out Hit-based</u>: using innermost tracker (pixel) hits as seeds
 - Outside-In Hit-based: using outermost tracker hits as seeds
 - □ <u>Outside-In State-based</u>: using level 2 muons as seeds
- Efficiencies tested on collision-like tracker tracks
 IOUit algorithm performance strongly depends on piv

IOHit algorithm performance strongly depends on pixel efficiency

Charge Asymmetry of Atmospheric Muons

- Flux ratio of positive to negative muons in cosmic rays measured as a function of the muon momentum
- Combining different samples ...
 - Magnet Test Cosmic Challenge events collected in 2006
 CRAFT 2008 data
- ... and reconstruction algorithms:
 - Global tracks
 - Standalone muons
- Raw charge ratio measured by CMS corrected for several effects:
 - □ Energy loss in the earth
 - □ Moment resolution
 - □ Mis-assignment of the charge

Charge Asymmetry of Atmospheric Muons

- Charge ratio measured for muons in a large momentum range: 3 GeV/c to 1 TeV/c
- Constant flux observed below 100 GeV/c:

 $R = 1.2766 \pm 0.0032 \text{ (stat)} \pm 0.0032 \text{ (syst)}$

World most precise measurement

 Increase of charge asymmetry at high moment
 Good agreement with models of muon production in cosmic ray showers

Compatible with previous measurements

Muons in Collisions at 900 and 2360 GeV

• First muons from pp collisions observed in barrel and endcap

• J/ψ candidate in the endcap: $\Box p_T(\mu_1) = 3.6 \text{ GeV/c}$ $\Box p_T(\mu_2) = 2.6 \text{ GeV/c}$ $\Box m(\mu\mu) = 3.03 \text{ GeV/c}^2$

Dilepton Resonances at 7 TeV

Invariant mass of dimuons in 0.985 nb of pp collisions

Looking for Upsilon and Z boson resonances

First W and Z Boson Candidates

□ More details on Emanuele Di Marco's talk next Thursday

Conclusions

- The design of the CMS muon spectrometer and its performance on cosmic rays has been presented
- Efficiency of various high level trigger, identification and reconstruction algorithms have been measured
 - Good agreement with expectations from Monta Carlo simulation
- The CMS muon spectrometer proved to improve the momentum resolution and charge assignment of reconstructed tracks at high $p_{\rm T}$
- CMS has measured the charge asymmetry of cosmic muons in the momentum range from 3 GeV/c to 1 Tev/c
- For muon momenta below 100 Gev/c, the flux ratio is measured to be a constant 1.2766 \pm 0.0032 (stat) \pm 0.0032 (syst)
 - □ Most precise measurement to date
- First muons detected in pp collisions
 - \Box J/ ψ resonances measured, looking for Upsilon and Z boson signals
 - Vector boson candidates observed