# The commissioning of ALICE's TPC

# Magnus Mager for the ALICE TPC collaboration

CERN

June 7th, 2010

Magnus Mager (CERN)

The commissioning of ALICE's TPC

June 7th, 2010 1 / 22

#### Outline

- Overview of ALICE and its TPC
- TPC subsystems and their performance
- Calibration status
- First results

### ALICE



Magnus Mager (CERN)

# The TPC – key facts

- ▶ pseudo-rapidity coverage: |η| < 0.9 or |η| < 1.5 for full and 1/3 of radial track length, respectively
- ▶ active volume: -2497 < z < 2497 mm times 848 < r < 2466 mm</p>
- read-out chambers: 2 × 2 × 18 (side, radial and azimuthal segmentation) multi-wire proportional chambers
- ▶ gas: Ne-CO<sub>2</sub>-N<sub>2</sub> [85.7-9.5-4.8]
- number of pads: 557,568





#### Field cage

- largest ever built for a TPC
- radiation lengths  $X/X_0$ :
  - 1.367% (inner field cage)
  - 0.607% (gas)
  - 2.153% (outer field cage)
- detailed structure modeled in MC in very nice agreement with tomographic results
- water cooled voltage divider
- ▶ potential: 100 kV (400 V/cm)
- drift time: 96 μs (nominal; full length)
- very stable operation
  - few trips, but well understood
  - related to beam losses



#### Readout chambers

- ▶ 72 multi-wire proportional chambers
  - $2 \times 18$  inner read-out chambers
  - $2 \times 18$  outer read-out chambers
- occasional trips
  - strongly correlated to LHC beam losses



#### Front-end electronics

- based on two custom made circuits:
  - PASA (Pre-Amplifier ShAper): 16 channel charge sensitive amplifier and pulse shaper
  - ALTRO (ALice Tpc Read-Out): 16 channel ADC with digital processing and buffering
- ▶ 10 MHz sampling rate: 900–1000 samples
- de-randomising multiple event buffer for 4 events
- 4,536 front-end cards with 8 PASAs and ALTROs (128 channels) each
- 216 independent partitions (6 per sector) connected via optical fibres (160 MByte/s) to the DAQ.





June 7th, 2010 7 / 22

# Front-end electronics (cont.)

#### different readout modes:

- full readout: for high occupancy events (PbPb) with multiple event buffer
- sparse readout: for low occupancy events, skipping empty channels but without multiple event buffer

#### attainable readout times:

- 280 μs (empty events, including noise)
- ► 500 µs (7 TeV min. bias pp events), rates of 1.8 kHz were achieved recently at an interaction rate of 13.5 kHz
- 2.3 ms (PbPb events, estimated)

## Cooling system

#### problem:

- gas mixture is very sensitive to temperature
- electronics dissipate about 27 kW
- ITS and TRD add heat from in- and outside

#### implemented solution:

- leak-less underpressure cooling system with about 60 circuits
- 500 temperature sensors
- ► obtained result: 0.046 K RMS temperature homogeneity



#### Gas recirculation system

- mixture: Ne–CO<sub>2</sub>–N<sub>2</sub> [85.7–9.5–4.8]
- precise control of gas mixture
- removal of Oxygen: only about 1 ppm left
- humidity kept at a fixed level to avoid aging of components



#### Laser system

- Laser specifications:
  - colour:  $\lambda = 266 \text{ nm}$  or E = 4.66 eV
  - energy: 100 mJ per 5 ns
  - ▶ rate: 10 Hz
- split into 336 beams distributed over the TPC volume
- used for (time dependent) spatial calibrations
- is run intermixed with physics data



#### Milestones

- - configuration and control integrated into ALICE-wide framework
  - fully controlled by central ALICE shifters



Noise figure

- ▶ average RMS noise: 0.7 LSB or 700 e
- noisy spots identified, zero-suppression is adopted
- empty event size: 30 kByte



#### Gain

- calibration of electronic variations with injected pulses
- precise absolute calibration using <sup>83</sup>Kr decays
- gain spread is on the level of 20% and is corrected for offline



### Drift velocity

#### redundant implementation:

- photo electrons from the central electrode = 250
- position of laser tracks
- track matching with inner detectors
- dedicated gas monitor
- time dependent calibration parameters are obtained online
  - Laser runs every hour interleaved with physics data taking
  - DAQ machines calculate the calibration parameters on the fly
- $\blacktriangleright$  achieved relative precision:  $10^{-4}$



# ${\bf E}\times {\bf B}$

#### E × B-effect due to:

- imperfect B-field
- imperfect orientation of TPC (direction of drift field)
- misaligned, or tilted chambers (E-field distortions)
- overall effect:  $\leq 7 \text{ mm}$
- $\blacktriangleright$  corrected to below  $1 \ mm$
- further, detailed study ongoing



# $p_{\perp}$ resolution

- obtained from matching upper part and lower part of a cosmic track
- current calibration:  $(\sigma_{p_{\perp}}/p_{\perp})^2 = (0.01)^2 + (0.007p_{\perp})^2$





# dE/dx spectrum



#### Tomography



ALICE-TPC collaboration

#### The ALICE-TPC collaboration

Harald Appelshäuser<sup>6</sup>, Peter Braun-Munzinger<sup>7</sup>, Peter Christiansen<sup>9</sup>, Panagiota Foka<sup>7</sup>, Ulrich Frankenfeld<sup>7</sup>, Chilo Garabatos<sup>7</sup>, Peter Glässel<sup>8</sup>, Hans-Ake Gustafsson<sup>9</sup>, Haavard Helstrup<sup>1</sup>, Marian Ivanov<sup>7</sup>, Rudolf Janik<sup>2</sup>, Alexander Kalweit<sup>5</sup>, Ralf Keidel<sup>11</sup>, Marek Kowalski<sup>10</sup>, Dag Toppe Larsen<sup>1</sup>, Christian Lippmann<sup>3</sup>, Magnus Mager<sup>3</sup>, Adam Matyja<sup>10</sup>, Luciano Musa<sup>3</sup>, Børge Svane Nielsen<sup>4</sup>, Helmut Oeschler<sup>5</sup>, Miro Pikna<sup>2</sup>, Attiq Ur Rehman<sup>3</sup>, Rainer Renfordt<sup>6</sup>, Stefan Rossegger<sup>3</sup>, Dieter Röhrich<sup>1</sup>, Hans Rudolf Schmidt<sup>7</sup>, Martin Siska<sup>2</sup>, Brano Sitár<sup>2</sup>, Carsten Soegaard<sup>4</sup>, Johanna Stachel<sup>8</sup>, Peter Strmeň<sup>2</sup>, Imrich Szarka<sup>2</sup>, Danilo Vranic<sup>7</sup> Jens Wiechula<sup>8</sup>

<sup>1</sup>Department of Physics, University of Bergen, Bergen, Norway
<sup>2</sup>Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
<sup>3</sup>European Organization for Nuclear Research (CERN), Geneva, Switzerland
<sup>4</sup>Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
<sup>5</sup>Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
<sup>6</sup>Institut für Kernphysik, Johann-Wolfgang-Goethe Universität Frankfurt, Frankfurt, Germany
<sup>7</sup>GSI Helmholtzernturm für Schwerionenforschung GmbH, Darmstadt, Germany
<sup>9</sup>Dhysikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
<sup>9</sup>Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
<sup>10</sup>The Hennyk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
<sup>11</sup>Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

Events

#### **Events**



Magnus Mager (CERN)

#### Events

#### **Events**



Magnus Mager (CERN)