Baryon - antibaryon asymmetry in the central rapidity region at 0.9 and 7 TeV with ALICE

Michal Broz for the ALICE collaboration

Comenius University

DESY, Hamburg

Physics at the LHC 2010, 7-12 June 2010,

Outline

Baryon number transport

- Theoretical models
- Previous experimental results

• Data Analysis

- Data sample
- Event selection
- Track selection

Corrections

- Absorption
- Background
- Feed down
- Results

Baryon number transport

Constituent quark model

• Baryons are described as quark-diquark pairs

 Valence quarks are connected via nonperturbative configuration of gluon field (SJ)

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

- Probability of BN transfer thorough rapidity interval is $\approx \exp(\alpha-1).\Delta y$
- α depends on configuration in which BN is transported
 - Diquark (CQM)
 - SJ accompanied by diquark
 - SJ accompanied by quark
 - SJ itself

α ~	
Diquark	-1/2
SJ accompanied by diquark	-1/2
SJ accompanied by quark (Rossi&Veneziano)	1/2
SJ itself	1/2
SJ itself (Kopeliovich)	1

B.Z.Kopeliovich, Sov. J. Nucl. Phys. 45, (1987) 1078

G.C.Rossi, G.Veneziano, Nucl. Phys. B123, (1977) 507

Michal .Broz@cern.ch

3

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

Previous experimental results

Results from RHIC

- Proton excess at mid-rapidity can be attributed to the BN transport from the beam at RHIC energies ($\sqrt{s}=200$ GeV, $\Delta y=5.4$)
- PYTHIA (old version without multi parton interaction) systematically overestimates the proton ratio
- HIJING-B describes the experimental data

BRAHMS: Phys. Lett. B607 (2005) 42

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

Data sample

- The data collected during the first LHC p+p run in December 2009 at 900 GeV.
- About 750 K minimum bias p+p events were recorded with the magnetic field B = 0.5 T
 - Data taken from the official list of good runs
- Events with proper online & offline trigger were selected
- Trigger was based on the combination of the information provided by the SPD and the two sides of the Vo detectors
- Cut on primary vertex was applied

Offline Trigger	
Two chips with a hit in the SPD	Yes
One chip with a hit in SPD and beam- beam flag in either VOA or VOC	Yes
Beam - beam flags on bothV0A and V0C	Yes
Beam - gas flag by either VOA or VOC	No

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

7 TeV

- The data were collected in March 2010 at 7 TeV.
- About 3.1 M minimum bias p+p events were analyzed with the magnetic field B = 0.5 T

Track selection criteria

Track Selection – Quality cuts			
Number of TPC clusters	80		
Number of TPC clusters (dE/dx)	80		
x ² /N _{TPCclusters}	3.5		
Number of ITS clusters	2		
Hit on SPD1 SPD2	Yes		

p_t dependent dca cut

- Fit the dca distribution of (anti)protons in |dca_{xy}| < 0.2 cm for both MC and data
- Extract the "resolution" from the fit

Michal .Broz@cern.ch

p _t range [GeV/c]	σ [μm]	5σ [μm]
0.45 – 0.55	530	2650
0.55 – 0.65	490	2450
0.65 – 0.75	440	2200
0.75 – 0.85	385	1925
0.85 – 0.95	365	1825
0.95 – 1.05	360	1800

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

- The TPC of the ALICE experiment is symmetric around mid-rapidity and has full azimuthal coverage.
- As a consequence, many detector effects such as the acceptance, the reconstruction and the particle identification ones are the same for particles and anti-particles and thus cancel out in the ratio.
- Effects which we need to correct for is absorption, background, feed down and cut efficiencies

$$\left(\frac{N_{p}}{N_{p}}\right)_{corrected} = \left(\frac{N_{p}}{N_{p}}\right)_{raw} \times C_{absorption} \times C_{background-p} \times C_{cuts} \times C_{feed-down}$$

Corrections summary					
	Mode	p [%]		pbar [%]	
Source		0.9 TeV	7 TeV	0.9 TeV	7 TeV
Absorption	MC	5.3	5.4	18.8	18.6
Background	Data	2.1 - 3.8	1.5 – 3.8	0	0
Cuts	MC	18.2	16.7	23.5	22.0
Feed-down	Data	12.3	12.0	12.6	12.3

10

Absorption correction

- By absorption we mean the interaction of either the proton or the anti-proton with material resulting in the disappearence of the first.
- This mechanism is directly related to the interaction cross section of protons and anti-protons with the material.
- Correction factors was extracted from MC
 - Rely on proper description of material budget
 - Still working on finalizing the systematics for the absorption

Correction for background

- Correcting for the contamination from background, implies the knowledge of the corresponding dca distribution at small values
- The distinct feature of the distribution of protons is the long tail that comes mainly from the background protons. The effect is more pronounced at low pt values.
- Corresponding distribution of the antiprotons is background free
- The correction factor was extracted using fitting functions on real data.

$$f_p(dca) = \frac{f_p(dca)}{R(p/p)} + A \times f_{p-background}(dca)$$

11

dca_{xv} [cm]

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

Correction for background -MC Templates

- The estimation of correction for background is performed using different functional form for the fitting functions or by using MC templates
 - Differences seen in the corrected values are atributed in the systematic uncertainty
- Fit data dca distribution by sum of MC template histograms
- Fit is searching for fractions corresponding to MC template histograms
- Then part of primary like protons in selected dca interval is evaluated
- This is done for each p_t bin

$$f(dca) = A \times h_{p-primary}(dca) + B \times h_{p-background}(dca)$$

Feed down correction

- Take advantage of the experience gained from the correction for background protons (based on data). Attempt to extract the contamination for feed-down (anti)protons using different methods:
 - Looking at MC, applying all the quality criteria at the track level (including the dca cut) and extracting the contamination from the survived track sample.
 - Fit data with MC templates
 - Fit data with a sum of three Gaussians

$$f_{p-data}(p_t, y) = A_1 \cdot g_{1(prim.)} + A_2 \cdot g_{2(\Lambda)} + A_3 \cdot g_{3(backg.)}$$

Michal.Broz@cern.ch

Rapidity dependence

- Preliminary result show no sign of rapidity dependence
- Experimental points are compared with different model predictions that include variation of BN transport mechanisms:
 - HIJING-B clearly underestimates the y dependence
 - QGSM's (only longitudinal information) version with $\alpha_{SJ} \approx 1$ is systematically below the data points
 - The different PYTHIA tunes describe the data well.

Transverse

momentum dependence

- Preliminary result show no sign of transverse momentum dependence
- Experimental points are compared with different model predictions that include variation of BN transport mechanisms:
 - HIJING-B predicts a decrease of the ratio with increasing p_t not seen in p+p collisions.
 - The different PYTHIA tunes describe the data well.

15

Fully corrected ratio: stat. error - lines, syst. Error - are shaded around data points

16

Energy dependence of mid rapidity ratio

- Results at 900 GeV show still small excess of baryons over antibaryons.
- At 7 TeV mid rapidity ratio goes to unity
- Results are well described with BN transfer via Regge trajectory using $\alpha \approx \frac{1}{2}$.
- No significant contribution with constant BN transport with $\alpha_J \approx 1$ is needed.

Summary

- We measured the antiproton proton ratio for 900 GeV and 7 TeV LHC.
- Results at 900 GeV show still small excess of baryons over antibaryons.
- At 7 TeV mid rapidity ratio goes to unity.
- Results are well described with BN transfer via Regge trajectory using α ≈ ½.
- No significant contribution with constant BN transport with $\alpha_J \approx 1$ is needed.

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

Backup

Charge asymmetry in the cut efficiency \rightarrow correction to be included in the ratio

p [GeV/c]

p [GeV/c]

Efficiency: p

19

Physics at the LHC 2010, 7-12 June 2010, DESY, Hamburg

And the second and th

Tracking scenario

• Standalone TPC

Used for cross checks (systematics)

- Momentum determination from the TPC
- Primary vertex from the TPC
- Hybrid TPC

Used for cross checks (systematics)

- Standalone-TPC tracks (momentum determination)
- ITS clusters for each track (reduction of secondaries)
- Primary vertex from the SPD
- Full hybrid TPC

Default used for analysis

- Standalone-TPC tracks (momentum determination)
- ITS clusters for each track (reduction of secondaries)
- Primary vertex from the SPD
- Update parameters of the global track (better impact parameter resolution)

Systematics - Variation of cuts

- Vary cut ranges for Vz, Nclusters (TPC) and dca
- For each analysis, a new set of corrections was calculated and applied to the raw values.
- The differences are attributed to the systematic uncertainty (see table)

Systematics - Corrections & Analysis mode

- <u>م</u>1.2 1.2 م 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 • Gaus Standalone TPC ldca_(p) < 5_{0xv}(p) Hybrid TPC Polynomial A A10 + A12 Full Hybrid TPC 0.2 0.2 -0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0.2 0.4 0.6 -0.4 -0.2 0.2 0.4 0.6 -0.8 -0.6 0.8 -08 -0.6 0 0.8 -08 -0.6 0.8
 - Use different ways to extract the correction for secondaries (MC templates, polynomial fit)
 - Use different MC productions to extract the absorption correction maps
 - Analysis using ST, HT, FHT

23

Absorption correction

Cut efficiencies

Charge asymmetry originating from the cuts related to the ITS

Systematic uncertainties

So	urce	Action	0.9 TeV 7 Te	
Materi	al budget	MC production with the material budget variation	0.5%	
Cross-section		Bendiscioli and Kharzeev, Riv.Nuovo Cim.17N6, 1-142 (1994)	1.0%	
	dca	3σ, 5σ, 7σ dca cut	0.4%	0.5%
Variation of the cut ranges	N _{clusters} (TPC)	70-110	< 0.1%	< 0.1%
	Vz	Vz < 8 - 16 cm	< 0.1%	< 0.1%
Corrections	Secondaries	MC templates, different functional forms for the background	0.4%	0.4%
	Absorption	Maps from different productions	0.2%	0.1%
	Cut efficiency	Maps from different productions	0.5% 0.5%	
	Feed-down	MC templates, Gaussian fits		
Background		Run the analysis including all the available triggers < 0.1%		< 0.1%
Different analysis modes		Run the analysis chain + corrections using the standalone TPC, hybrid-TPC, full hybrid-TPC modes	0.1%	0.1%
Event classes		Contamination of SD and DD in the event sample	<0.1%	

• Different contributions are added quadratically and results into σ_{sys} = 1.4 % Michal Broz@cern.ch

Multiplicity dependence - 900 GeV

- The multiplicity distribution of charged particles (extracted after applying the standard quality cuts) was divided in three multiplicity bins
- For each bin, the entire analysis & correction chain, described on the previous slides, was applied
- Preliminary result show no sign of multiplicity dependence

