EVIDENCE FOR AN

DIMUGNICHARGE ASYMMETRY

Iain Bertram Department of Physics Lancaster University for the DO Collaboration PLHC 2010 11th June 2010

CPViolation in Mixing

 Asymmetry in "same-sign" muons from decays of mixed neutral B mesons:

$$a_{sl}^b \equiv \frac{\Gamma\left(\bar{B} \to \mu^+ X\right) - \Gamma\left(B \to \mu^- X\right)}{\Gamma\left(\bar{B} \to \mu^+ X\right) + \Gamma\left(B \to \mu^- X\right)}$$

$$A_{sl}^b \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

<u>Grossman, Nir, Raz,</u> <u>Phys.Rev.Lett.97:151801,2006.</u>

- Extract in multiple ways
 - Time dependent tagged decays (e.g. DØ B_S semi-leptonic decays lifetime analysis <u>arxiv.org:0904.3907</u>)
 - asymmetry in single muon, or same sign dimuon events

At the Tevatron

 Inclusive, untagged analysis has contributions form both B_d and B_s. Take the measured production fractions (CDF) and mixing properties:

$$A_{sl}^b = (0.506 \pm 0.043) a_{sl}^d + (0.494 \pm 0.043) a_{sl}^s$$

- Large contribution from B_s
- Can be written in terms of CP-violating mixing phase: $a_{sl}^{q} = \frac{\left|\Gamma_{q}^{12}\right|}{\left|M_{q}^{12}\right|} \sin \theta_{q} = \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \theta_{q}$
- and in the SM it is given by:

$$A_{sl}^{b}(\mathrm{SM}) = \left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$$

Lenz, Nierste, JHEP 0706:072,2007

Outline of Measurement

- Measure both dimuon asymmetry A and inclusive asymetry a: $A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}} \qquad a \equiv \frac{n^+ - n^-}{n^+ + n^-}$
- Both have contributions from A^bsl, other process with muons and detector related background
 - I. Determine the detector and reconstruction backgrounds
 - minimal input from simulation
 - 2. Determine the fraction of prompt single and same-sign dimuons from mixed B decays
 - 3. Exploit the correlations in the backgrounds to minimise the systematic uncertainties of A^{b}_{sl}

DØ Experiment

- Key facts:
- Twee the second of the secon
 - Reversal of magnetic field every two weeks cancellation Bi-weekly polarity changes ensures ~equal datasets with each of most detector related asymmetries
 - Helps cancel most detector-related asymmetries

Dataset

Event Selection

- Single muon selection:
 - Good muon: reconstructed tracks in central tracker and muon system match well, $|\eta| < 2.2$
 - I.5 < p_T < 25 GeV (suppress EWK contributions)
 - If $p_T < 4.2$ GeV, require $p_z > 6.4$ GeV (get through toroid)
 - Good match to primary vertex: $|d_z| < 5$ mm, axial dca < 3 mm
- Dimuon selection:
 - Two like-sign muons satisfying all criteria above
 - Match same primary vertex
 - $M(\mu\mu) > 2.8 \text{ GeV}$ (suppress muons from same B)

I: Measure A and a

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = (+0.564 \pm 0.053)\%$$

• 3.7 x 10⁶ same-sign dimuon events

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-} = (+0.955 \pm 0.003) \%$$

- 1.5×10^9 single muon events
- These have significant background contributions: We need to distinguish between
 - Detector/reconstruction backgrounds

$$A = K \times A_{sl}^b + A_{bkg}, a = k \times A_{sl}^b + a_{bkg}$$

I: Measure A and a

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = (+0.564 \pm 0.053)\%$$

• 3.7 x 10⁶ same-sign dimuon events

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-} = (+0.955 \pm 0.003) \%$$

- 1.5×10^9 single muon events
- These have significant background contributions: We need to distinguish between
 - Detector/reconstruction backgrounds
 - "Dilution" due to other sources of "prompt" muons

$$A = K \times A_{sl}^b + A_{bkg}, a = k \times A_{sl}^b + a_{bkg}$$

2. Detector related Backgrounds

$$a_{\text{bkg}} = f_K a_K + f_\pi a_\pi + f_p a_p + \left(1 - f_{\text{bkg}}\right) \delta$$
$$A_{\text{bkg}} = F_K A_K + F_\pi A_\pi + F_p A_p + \left(1 - F_{\text{bkg}}\right) \Delta$$

(For dimuons we only consider linear terms in the asymmetry)

- f_K , f_π , fp, F_K , F_π , F_p are the fractions of kaons, pions and protons identified as muons in the single and dimuon samples
- $a_K, a_\pi, a_p, A_K, A_\pi, A_p$ are their reconstructed charge asymmetries
- $f_{bkg} = f_K + f_{\pi} + f_p$, and $F_{bkg} = F_K + F_{\pi} + F_p$
- δ and Δ are the muon reconstruction charge asymmetries

The Importance of Kaons

$$a_{\text{bkg}} = f_K a_K + f_\pi a_\pi + f_p a_p + \left(1 - f_{\text{bkg}}\right) \delta$$
$$A_{\text{bkg}} = F_K A_K + F_\pi A_\pi + F_p A_p + \left(1 - F_{\text{bkg}}\right) \Delta$$

- Dominant contribution is kaon term:
 - Detector is made of matter
 - Different interaction cross-section for K⁺ vs K⁻
 - K⁺ has substantially lower cross-section because no equivalent to $K^-N \rightarrow Y\pi$
 - Large positive asymmetry from K decay in flight & punchthrough
 - Need to measure in data!
- Other asymmetries are $\sim 10x$ smaller (but measure as well!)

 \mathbf{i}

Kaon Asymmetry Background

- Sources of Kaon in single muon sample
 - Kaon decays, punch through, tracking overlap, etc.
 - Find $\Phi(1020) \rightarrow K^+K^-$, and $K^{*0} \rightarrow K^+\pi^-$ where K identified as a muon

Fraction of Kaons in Sample

Use simulation to confirm pion reconstruction ε is the same for K^{*+} and K^{*0} if K^+/K_S is reconstructed

Pion and Proton Background Asymmetry

• a_{π}, a_{p}, A_{π} and A_{p} are measured using $K_{s} \rightarrow \pi\pi$ and $\Lambda \rightarrow p\pi$

aĸ	aπ	a _P
(5.51 ± 0.11)%	(0.25 ± 0.10)%	(2.3 ± 2.8)%

- These are all determined in "muon" p_T bins.
- Asymmetries in the dimuon sample are derived taking into account the slightly different muon p_T distributions:

$$F_K A_K = \sum_{i=0}^4 F^i_\mu F^i_K a^i_K$$

Other Backgroundsractions

- Use n_{π}/n_{K} and n_{p}/n_{K} from <u>simulation</u> to derive f_{π} , f_{p} , F_{π} and F_{p} from f_{K} and F_{K} (with a check on n_{K} in data to evaluate uncertainties)
 - Also adjust for the probabilities for a π , p, K to be reconstructed as a muon (from ϕ , K_S, Λ decays)

Background Summary

 Putting everything together, the detector & reconstruction backgrounds are:

$(1-f_{bkg})$	f_{K}	${f f}_{\pi}$	f_p
(58.1±1.4)%	(15.5±0.2)%	(25.9±1.4)%	(0.7±0.2)%
	$a_{\rm K} f_{\rm K}$	$a_{\pi}f_{\pi}$	$a_p f_p$
	$(+0.854 \pm 0.018)\%$	$(+0.095 \pm 0.027)\%$	$(+0.012 \pm 0.022)\%$
	A _K F _K	$A_{\pi}F_{\pi}$	A_pF_p
	$(+0.828 \pm 0.035)\%$	$(+0.095 \pm 0.025)\%$	$(+0.000 \pm 0.021)\%$

(Statistical uncertainties only)

Simulation gives similar results (not used)

Muon Reconstruction Asymmetry

$$a_{bkg} = f_K a_K + f_\pi a_\pi + f_p a_p + \left(1 - f_{bkg}\right) \delta$$
$$A_{bkg} = F_K A_K + F_\pi A_\pi + F_p A_p + \left(1 - F_{bkg}\right) \Delta$$

x 10²

- Use dimoun triggers, and examine J/Ψ
 - Measure Asymmetry in muon & track and in dimuon events

 $\delta = (-0.076 \pm 0.028)\%$ $\Delta = (-0.068 \pm 0.023)\%$

• Direct benefit of reversing polarity of magnet

2000 Entries/50 MeV $D_{0}, 6.1 \, \text{fb}^{-1}$ **(a)** $\chi^2/dof = 62/29$ 1500 1000 500 0 2.5 3.5 3 $M(\mu^+\mu^-)$ [GeV] DØ, 6.1 fb⁻¹ χ^2 /dof = 51/36 Entries/50 MeV **(b)** 1000 -1000 2.5 3.5 2 3 $M(\mu^+\mu^-)$ [GeV]

3 Dilution Factors

$$A - A_{\rm bkg} = K \times A^b_{sl}$$

$$a - a_{\rm bkg} = k \times A^b_{sl}$$

- Many processes contribute to the "physics single and same sign dimuon samples in the denominator
 - Only the oscillating term produces a signal
- k, K are determined with simulations
 - Decay processes are well measured

 $\begin{array}{ccc} & \operatorname{Process} \\ \hline T_1 & b \to \mu^- X \\ T_{1a} & b \to \mu^- X \ (\operatorname{nos}) \\ T_{1b} & \bar{b} \to b \to \mu^- X \ (\operatorname{osc}) \\ \hline T_2 & b \to c \to \mu^+ X \\ T_{2a} & b \to c \to \mu^+ X \ (\operatorname{nos}) \\ T_{2b} & \bar{b} \to b \to c \to \mu^+ X \ (\operatorname{osc}) \\ \hline T_3 & b \to c \bar{c} q \ \text{with} \ c \to \mu^+ X \ \operatorname{orc} \bar{c} \to \mu^- X \\ \hline T_4 & \eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+ \mu^- \\ \hline T_5 & b \bar{b} c \bar{c} \ \text{with} \ c \to \mu^+ X \ \operatorname{orc} \bar{c} \to \mu^- X \\ \hline T_6 & c \bar{c} \ \text{with} \ c \to \mu^+ X \ \operatorname{orc} \bar{c} \to \mu^- X \end{array}$

 $K = 0.342 \pm 0.023$ $k = 0.041 \pm 0.003$

Closure Test

$$a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}} = (+0.955 \pm 0.003)$$

$$a - a_{\text{bkg}} = k \times A_{sl}^b$$

 $a_{\rm bkg} = (0.917 \pm 0.45) \%$

- a is dominated by background
- Use it as a closure test:
 - Do we reproduce the pT dependence of the background asymmetry
 - **YES!**

 $k=0.041\pm0.003$

) %

Minimising the Uncertainty

- The single muon asymmetry dominated by background, and background systematic is dominant.
 - Use a to constrain background

$$A' = (A - \alpha a) = (K - \alpha k) A_{sl}^b + (A_{bkg} - \alpha a_{bkg})$$

- Choose α to minimise uncertainty of A^{b}_{sl}
 - α will be close to 1 since uncertainty highly correlated

 $A_{bkg} = (+0.815 \pm 0.070)\%$

 $a_{bkg} = (+0.917 \pm 0.045)\%$

Result

$$A_{sl}^b = (-0.957 \pm 0.251 \,(\text{stat}) \pm 0.146 \,(\text{syst}))\%$$

$$A_{sl}^{b}$$
 (SM) = $\left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$

- Systematic uncertainty reduced by more than two!
- Result is ~3.2 σ from SM

Cross Check - dimuon Mass

- Compare the expected and observed dimuon charge asymmetry for different dimuon mass bins
- Completely different background distribution
- data inconsistent with $A^{b}_{sl} = 0$
- No sign of "bump" in distribution

Consistency

Consistency

 This measurement has contributions from B_d and B_s

 $A_{sl}^b = (0.506 \pm 0.043) a_{sl}^d + (0.494 \pm 0.043) a_{sl}^s$

 Can take a^d_{sl} from B factories and extract a^s_{sl}:

 $a_{sl}^s = (-1.46 \pm 0.75) \%$ $a_{sl}^s (SM) = (+0.0021 \pm 0.0006) \%$

> • $a^{s}{}_{sl}$ can then be translated into constraints on $\varphi_{s}, \Delta\Gamma_{s}$

World Average a^ssl

Conclusions

- We have made a new measurement of the like sign dimuon asymmetry which is significantly different from zero!
 - Assuming the source of the asymmetry is B-physics, we obtain

 $A_{sl}^b = (-0.957 \pm 0.251 \,(\text{stat}) \pm 0.146 \,(\text{syst}))\%$

- This result is consistent with all other measurements of CP violation in B mixing, but inconsistent with the SM at 99.8% CL (3.2 σ)
- It was obtained using very little input from simulation, and all tests show excellent consistency

Extras

uncertainties

	<i>A^b</i> _{sl} inclusive	A^{b}_{sl}	A^{b}_{sl}	
Source	muon	dimuon	combined	_
A or a (stat)	0.00066	0.00159	0.00179	
f_K or F_K (stat)	0.00222	0.00123	0.00140	
$P(\pi \to \mu)/P(K \to \mu)$	0.00234	0.00038	0.00010	
$P(p \to \mu)/P(K \to \mu)$	0.00301	0.00044	0.00011	
A_K	0.00410	0.00076	0.00061	
A_{π}	0.00699	0.00086	0.00035	
A_p	0.00478	0.00054	0.00001	
$\delta \text{ or } \Delta$	0.00405	0.00105	0.00077	
f_K or F_K (syst)	0.02137	0.00300	0.00128	
π, K, p multiplicity	0.00098	0.00025	0.00018	
c_b or C_b	0.00080	0.00046	0.00068	
Total statistical	0.01118	0.00266	0.00251	
Total systematic	0.02140	0.00305	0.00146	
Total	0.02415	0.00405	0.00290	43

Reversing Magnetic Field

1. Look for matter and antimatter distribution with magnetic field pointing in one direction.

2. Look for matter and antimatter distribution with magnetic field pointing in opposite direction.

