Commissioning and performance of the ATLAS Trigger with proton collisions at the LHC

Iwona Grabowska-Bold (UC, Irvine AGH-UST, Kraków) for the ATLAS Collaboration

Physics at the LHC 2010, Hamburg, June 7th-12th

Outline

- Introduction
 - ATLAS trigger and DAQ system
 - Trigger selection
- Trigger commissioning strategy
- Results from 2009-2010 data
 - LVL1 timing and calibration
 - Performance of tracking, calorimeter and muon tracking trigger reconstruction
 - Physics trigger objects (i.e. electrons, photons, muons etc) not discussed in detail here:
 - Dedicated talk by R.Mackeprang on June 8th
- Summary and outlook

ATLAS Trigger/DAQ System

- Three level system •
- Level 1 (LVL1)
 - Fast custom-build electronics,
 - Trigger decision based on muon and calorimeter information only,
 - Coarse resolution,
 - Latency: <2.5μs,

Level 2 (LVL2)

- Large PC farm (O(1000) cores)
- Software based reconstruction and selection,
- Dedicated fast algorithms,
- (HLT Limited data access (Region-Of-Interest - Rol), Trigger
- <Processing time>= 40 ms,

Level 3 – Event Filter (EF)

- Large PC farm (O(5000) cores),
- Offline software reused in Rol,
- Full event information available, ج <Processing time>= 4s

Level

Trigger selection

Trigger chain:

- sequence of reconstruction and selection algorithms,
- typically 2-10 algorithms per chain,
- possible event rejection at each step in the chain,

Trigger menu:

- collection of trigger chains,
- luminosity dependent,
- typically had 200-500 chains so far.

Trigger physics objects	LVL1 lowest thresholds (GeV)	HLT lowest thresholds (GeV)
Electron/photon	2	3
Tau	5	12
Muon	4	4
Missing energy	10	20
Jet	5	20
Total energy	10	90
22010	Commissioning of the ATLAS Trigger	

on the ALLAS THEER

Trigger commissioning strategy

2009/2010 data samples

- <u>2009 run</u>
 - vs= 0.9 TeV or 2.36 TeV,
 - About 0.5M collision events written to tape,
 - Peak luminosity: 7x10²⁶cm⁻²s⁻¹,
 - Integrated luminosity: 12 μb⁻¹,
- <u>2010 run (ongoing)</u>
 - − √s=7 TeV,
 - More than 800M collision events observed,
 - Peak luminosity: 2x10²⁹cm⁻²s⁻¹,
 - Integrated luminosity > 14.8nb⁻¹

LVL1 commissioning with beam

- Timing of LVL1 calorimeter triggers determined with splash events
 - Corrections for time-of-flight to estimate collision timing,
 - z-axis: nanosecond relative peak position for the EM layer (similar for hadronic),
 - Timing accuracy with splashes: 5-10 ns,

- Final LVL1 calo timing adjustments with collisions will be at 2 ns level,
- LVL1 muon timing: the forward trigger is completely timed-in to ~2-3 ns, not enough data in the central region yet,
- Energy calibration of LVL1 calo using splash events established at 5-10% accuracy.

Min Bias triggers

- Minimum Bias Trigger Scintilator (MBTS_1) was a main physics trigger in 2009
 - 16x2 scintillator paddles installed in front of the calorimeter cryostat on both sides ,
 - Used in first charge-particles multiplicity studies for 900 GeV,
 - Efficiencies derived from running a high-rate random trigger at LVL1 and performing HLT selection (MinBias triggers in rejection mode already in Dec 2009)

Trigger operations

 10^{2}

10

0

20 40 60 80 100 120 140 160 180 200

Processing time per event [ms]

- Trigger running very smoothly during single beam and collision periods
 - Monitoring and shift operations exercised 24/7,
 - No algorithm crashes so far,
 - Rare timeouts for massive cosmic showers (<20 timeouts per day),
 - Each timeout is analyzed carefully, ٠
 - Feature of enabling/disabling/prescaling triggers without affecting an ongoing run maximizes data-taking efficiency,
 - Very detailed online monitoring of global trigger features and also detailed trigger chain output is very helpful,
 - Offline monitoring of trigger performance w.r.t. physics objects also in place.

). > 500 MeV

Observed width (incl. resolution): 240 pre

-1

0

Vertex x [mm]

200

150

100 50

HLT tracking performance

- At vs=0.9TeV rate of RoI-based tracks was very small, therefore most studies done in full scan (i.e. scanning the entire detector) mode
 - Performance w.r.t. offline objects,
 - Slight fall of LVL2 efficiency at high $p_{\rm T}$ for the forward region,
 - The central region is flat for large p_T,
 - EF plateau near 100%
- Commissioning of RoI-based objects started up at Vs=7TeV

Transverse beam position

Commissioning of the ATLAS Trigger

- Accurate online measurements of the interaction region,
 - Full-scan tracking reconstruction at LVL2, results available whenever HLT is running,
 - Available to the LHC machine and soon to HLT algorithms

Calorimeter triggers

- Calorimeter reconstruction is a starting point for many physics objects
 - Electrons, photons, jets, taus etc
- Distributions generally agree well with simulation,
 - Data is absolutely needed to derive corrections for transition regions

Missing energy and total energy

- Missing energy is a global feature of heavy, non-interacting particles being evidence of new physics use missing energy to trigger on them,
- This trigger is non-RoI-based,
 - Sum E_T over all calorimeter channels requiring some noise suppression at EF ($|E_T| > 2\sigma_{noise}$),
 - Correct LVL2 and EF for high-p_T muons,
- Total energy trigger also available
 - Used for exotic searches

Muon triggers

- LVL1 muon trigger not fully timed-in in the central region yet , more data needed,
 - LVL1 inefficiency at plateau is mainly due to the detector geometrical acceptance, with future timing adjustments it is expected to reach 84%,
- LVL2 and EF confirm LVL1 muons with standalone (muon system only) and combined (muon system +Inner Detector) reconstructions,
- Slow turn-on for standalone muon due to non-optimized p_T resolution

Summary and Outlook

- ATLAS trigger has worked extremely well since the very beginning writing to disk event rates following LHC operation needs (fraction of Hz-350 Hz),
- Trigger commissioning menu is very flexible to select physics events based on either LVL1 or HLT decision
- Trigger commissioning follows the plan:

• All HLT algorithms run online in monitoring mode, some also running in rejection mode,

- HLT rejection enabled for Min Bias and the lowest- \mathbf{p}_{T} egamma thresholds,
- Trigger performance monitored online and offline,
 - First results as expected, also remarkably well described by the simulation

• Next steps:

• Luminosity will gradually increase over the coming months until it reaches few 10³² cm⁻²s⁻¹,

- Other trigger objects (taus, muons, etc.) will enter into rejection mode soon,

• Trigger menu will switch from a commissioning to "physics" one at few 10³⁰ cm⁻²s⁻¹ (all triggers in rejection mode).

Back-up slides

ATLAS detector

Trigger commissioning with cosmic rays

- Trigger commissioning was started more than 2 years ago,
- Cosmic runs provided very useful samples for first performance studies

Status and next steps

- Trigger menu needs to evolve constantly following a luminosity increase ٠ accompanying LHC commissioning
 - Strategy: enable HLT rejection before pre-scaling to keep output rates within allocated bandwidth. If _ it does not help, tighten selection to collect most of data with un-pre-scaled triggers,
 - Output rates controlled via LVL1 and HLT pre-scale factors which can be fine-tuned on the fly.

Trigger objects	LVL1 lowest thresholds (GeV)	HLT lowest thresholds (GeV)	HLT rejection enabled
Minimum Bias			~10 ²⁶ (Dec 2009)
Electron/ photon	2	3	2x10 ²⁹ (May 24 th , 2010)
Tau	5	12	soon
Muon	4	4	
Missing energy	10	20	
Jet	5	20	
Total energy	10	90	
		Commissioning	of the ATLAS Trigger

PLHC2010

Commissioning of the AILAS Irigger