

Observation of Diffraction, Measurement of the Forward Energy Flow and Observation of Forward Jets with the CMS Detector

Benoît Roland University of Antwerp (on behalf of the CMS collaboration)

1

Outline

Observation of Diffraction

- Physics Motivation
- CMS Detector
- Event Selection
- Diffractive Signal Observation and MC Comparison

• Forward Energy Flow and Forward Jets

- Physics Motivation
- Event Selection
- Forward Energy Flow Measurement and MC Comparison
- Observation of Forward Jets
- Conclusion

Observation of Diffraction in *p p* collisions at 900 GeV and 2.36 TeV CM energies at the LHC

CMS PAS FWD-10-001

Physics Motivation

- Diffractive reactions in p p collisions: reactions $p \rightarrow X Y$ in which the systems X and Y are separated by a Large Rapidity Gap
 - → diffraction is described by a colourless exchange carrying the quantum numbers of the vacuum
- Hard diffraction: QCD (q or g) ↔ Soft diffraction: Regge (Pomeron)

- Diffractive events contribute significantly to Minimum Bias data set (~ 30 % of the total p p cross section)
- Modelling of soft diffraction is generator dependent
- → Constraint on diffractive contribution is essential to
 - understand the MB data set and improve the MB MC tunes

Universiteit Antwerpen

improve knowledge about PU

4

CMS Detector

Hadronic Forward calorimeters (HF)

 located at 11.2 m from IP on both sides of CMS

- rapidity coverage 2.9 < $|\eta|$ < 5.2
- Cerenkov calorimeter made of steel absorbers and embedded radiation-hard quartz fibers
- 13 rings with 0.175 \times 0.175 segmentation in η and φ (except for the 2 most inner rings and the most outer one)
- 2 types of fibers: long (run over the full depth) and short (start at 22 cm from the front of HF)
- → to distinguish between shower generated by e/y and shower generated by hadrons

Trigger System

- Beam Scintillator Counters
- located at \pm 10.86 m from IP (\pm 14.4 m for BSC2)
- designed to provide hit and coincidence rates
- Beam Pick-up Timing for the eXperiments
- designed to provide precise info on the bunch structure and timing of the incoming beam

Diffractive Event Selection

- Trigger signal in either of the BSC scintillators in coincidence with a signal from both BPTX detectors (BSCs coincidence would have suppressed SD signals)
- Primary vertex with |z| < 15 cm transverse distance from z axis < 2 cm at least 3 tracks used in the vertex fitting
- Rejection of beam halo candidates
- Rejection of beam background events
- Threshold of 4 GeV in HF, of 3 GeV in the other calorimeters
- Rejection of events with large signal in HCAL consistent with noise

Diffractive Signal Observation: peak in ξ **distribution**

- Σ (E ± Pz) related to the momentum loss of the scattered proton (runs over all energy depositions in the calorimeters)
- proton fractional momentum loss: $\xi \approx \Sigma$ (E ± Pz) / \sqrt{s}
- diffractive peak expected at low values of this variable ($\sigma \sim 1 / \xi$)
- uncorrected data shown and compared to PYTHIA D6T & PHOJET
- main systematic uncertainty due to $\pm 10\%$ energy scale variation
- PYTHIA describes better the non-diffractive part of the spectrum

Diffractive Signal Observation: LRG

- Diffractive events characterized by the absence of forward hadronic activity in HF due to the presence of a Large Rapidity Gap
- Diffractive peak expected at low energy deposition and low tower multiplicity in HF

Diffractive Signal Observation: Comparison with different tunes

Enriched Diffractive Sample

- Require low activity (Rapidity Gap) on one side (HF+ or HF-) of CMS
- \rightarrow enhance the diffractive component
- Look at properties of diffractive system X to test MC description ($\xi = M_x^2 / s$)
- PHOJET gives a better description of the diffractive system

900 GeV

E(HF+) < 8 GeV

Forward Energy Flow

Physics Motivation

- In forward region: one probes the small x content of the proton
 - parton densities might become very large
 - probability for more than one partonic interaction per event should increase

→ Measurement of the forward energy flow to distinguish between various models for the multiparton interaction

Minimum Bias Event Selection

- Trigger signal in each of the BSC scintillators in coincidence with a signal from both BPTX detectors → reject a large fraction of diffractive events
- Primary vertex with |z| < 15 cm transverse distance from z axis < 2 cm at least 3 tracks used in the vertex fitting
- Rejection of beam halo candidates
- Rejection of beam background events
- Threshold of 4 GeV for the uncorrected energy in HF
- Rejection of events with large and isolated signal in HF consistent with noise

Forward Energy Flow Measurement

$$R_{Eflow}^{\sqrt{s_1},\sqrt{s_2}} = \frac{\frac{1}{N_{\sqrt{s_1}}} \frac{\Delta E_{\sqrt{s_1}}}{\Delta \eta}}{\frac{1}{N_{\sqrt{s_2}}} \frac{\Delta E_{\sqrt{s_2}}}{\Delta \eta}}$$

- $\sqrt{s_1}$ = 2.36 TeV or 7 TeV
- $\sqrt{s_2} = 0.9 \text{ TeV}$
- $N_{\sqrt{s}}$ = number of Minimum Bias events selected at the CM energy \sqrt{s}
- $\Delta E_{\sqrt{s}}$ = Energy deposition in the rapidity range $\Delta \eta$ at the CM energy \sqrt{s}

Forward Energy Flow Measurement

detector level data, no systematic uncertainties

- energy flow is increasing with increasing CM energy & increasing η
- MC predictions in agreement with data, but no conclusion on the quality of the description can be made (missing systematics)
- \rightarrow snapshot of what we have now, not yet a final measurement
- → more results available soon, stay tuned! 17

Observation of Forward Jets

- Cuts as for the Minimum Bias event selection
- Look for jets in the HF region 3.0 < $|\eta|$ < 5.0
- P_t corrected > 10 GeV

Forward Dijet at 900 GeV

Conclusions

- Rediscovery of diffraction in p p collisions at 900 GeV & 2.36 TeV
- Diffraction observed in two ways: peak at low ξ values and presence of a Large Rapidity Gap
- Comparison to the MC event generators PYTHIA and PHOJET
 - PYTHIA describes better non-diffractive part of the spectrum
 - PHOJET describes better the diffractive system
- Constraint from diffraction important to improve MB MC tunes
 - PYTHIA tunes D6T, DW and CW give similar overall description
- First measurements of forward jets and forward energy flow in the HF acceptance (2.9 < $|\eta|$ < 5.2)

Integrated Luminosity 2010

Universiteit Antwerpen

23

Physics Motivation

- p p collisions at high energies are described by the convolution of
 - matrix elements associated to the hard scattering with
 - parton densities evolved up to μ^2 by QCD evolution equations
- Hadronic final state receives contributions from
 - the hard scattering process
 - the partons radiated during QCD evolution
- In MC: radiation described by parton shower
 - takes into account higher order contributions by resumming a subset of leading diagrams
 - which diagrams are leading depends on hard scale Q^2 and momentum fraction x_1 and x_2
 - → various models for the parton shower evolution:
 - DGLAP (PYTHIA) BFKL CCFM (CASCADE)
 - Differences more prominent in the forward region
- → Measurement of the forward energy flow to distinguish between various models for the parton shower evolution

Physics Motivation

- DGLAP evolution
 - emissions ordered in k_{t}
 - evolution from low to high Q^2
 - implemented in **PYTHIA**
- BFKL evolution
 - emissions ordered in x
 - evolution from high to low x
- CCFM evolution
 - angular ordering of the emissions
 - unintegrated gluon distributions
 - implemented in CASCADE
- Differences more prominent in the forward region
 - DGLAP: k_t ordering: softest emissions near proton remnant
 - BFKL/CCFM: forward emissions can be arbitrarily large

Multiparton Interaction (MPI)

Forward Energy Flow

Physics Motivation

 Factorization of the diffractive cross section in *e p* interaction is broken at *p p* collider by the presence of soft interaction and rescattering among the spectator partons

- rescatterings fill the rapidity gap and suppress the visible diffractive cross section
- effect quantified by the rapidity gap survival probability <S²>
- → determination of $\langle S^2 \rangle$ is an important measurement to be done at low luminosity with early LHC data

Control Plots at 900 GeV

Control Plots at 2.36 TeV

PYTHIA MPI tunes

• Perturbative 2-to-2 partonic cross-section is regularized in PYTHIA by the introduction of a cutoff p_{to} :

 $\sigma \propto 1/(p_t^2 + p_{t0}^2)^2$

- $p_{_{t0}}$ governs the description of the amount of MPI: larger MPI activity for smaller values of $p_{_{t0}}$

•
$$p_{t0}(\sqrt{s}) = p_{t0}(\sqrt{s_0}) (\sqrt{s} / \sqrt{s_0})^{\epsilon}$$

- D6T: p_{t0} = 1.84, $\sqrt{s_0}$ = 1.96 TeV, ϵ = 0.16
- DW: $p_{t0} = 1.9$, $\sqrt{s_0} = 1.8$ TeV, $\epsilon = 0.25$
- CW900A: p_{t0} = 1.8, \sqrt{s}_0 = 1.8 TeV, ϵ = 0.30