Physics at the LHC DESY Hamburg June 7, 2010

Jet Physics

The path from Clustering to Jetography

Matteo Cacciari LPTHE - Paris 6,7 and CNRS

Jets can serve two purposes:

They can be **observables**, that one can measure and *calculate*

They can be tools, that one can employ to extract specific properties of the final state

Outline

Introductory remarks and review

- New jet algorithms (anti-k_t, SISCone) and FastJet
- New properties/tools: areas, backreaction, background subtraction, taggers, filtering (trimming, pruning)
- Examples: reconstruction of a mass peak, Higgs search using jet substructure

A jet is something that happens in high energy events:

a collimated bunch of hadrons flying roughly in the same direction

Note: hundreds of hadrons contain **a lot** of information. More than we can hope to make use of

Often you don't need a fancy algorithm to 'see' the jets

But you do to give them a **precise** and **quantitative** meaning

Often you don't need a fancy algorithm to 'see' the jets

But you do to give them a **precise** and **quantitative** meaning

For instance: are there 3 or 4 jets in this event?

Jets are usually related to an underlying perturbative dynamics (i.e. quarks and gluons)

0000000000000

Jets are usually related to an underlying perturbative dynamics (i.e. quarks and gluons)

One purpose of a 'jet clustering' algorithm is then to reduce the complexity of the final state, simplifying many hadrons to simpler objects that one can hope to calculate

0000000000

Jet algorithm

A **jet algorithm** maps the momenta of the final state particles into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, **R**, which controls the extension of the jet

Jet definition

Jet definition

+ parameters (usually at least the radius R)

Jet definition

+ parameters (usually at least the radius R)

+ recombination scheme

Les Houches 2007 proceedings, arXiv:0803.0678

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate

Matteo Cacciari - LPTHE

Physics at the LHC - June 7, 2010

Observables

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions ·

* To be published in the proceedings of the 1990 Summer Study on High Energy Physics, *Research Directions for the Decade*, Snowmass, Colorado, June 25 - July 13, 1990.

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions ·

* To be published in the proceedings of the 1990 Summer Study on High Energy Physics, *Research Directions for the Decade*, Snowmass, Colorado, June 25 - July 13, 1990.

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;

2. Simple to implement in the theoretical calculation;

3. Defined at any order of perturbation theory;

4. Yields finite cross section at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronization.

Speed

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions ·

* To be published in the proceedings of the 1990 Summer Study on High Energy Physics, *Research Directions for the Decade*, Snowmass, Colorado, June 25 - July 13, 1990.

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions ·

* To be published in the proceedings of the 1990 Summer Study on High Energy Physics, *Research Directions for the Decade*, Snowmass, Colorado, June 25 - July 13, 1990.

Snowmass set standards, but didn't provide solutions

Two main classes of jet algorithms

Sequential recombination algorithms

bottom-up approach: combine particles starting from closest ones How? Choose a distance measure, iterate recombination until few objects left, call them jets

Work because of mapping closeness ⇔ QCD divergence

Examples: Jade, kt, Cambridge/Aachen, anti-kt,

Two main classes of jet algorithms

Sequential recombination algorithms

bottom-up approach: combine particles starting from closest ones How? Choose a distance measure, iterate recombination until few objects left, call them jets

Work because of mapping closeness \Leftrightarrow QCD divergence

Examples: Jade, kt, Cambridge/Aachen, anti-kt,

Cone algorithms

top-down approach: find coarse regions of energy flow.

How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Work because QCD only modifies energy flow on small scales Examples: JetClu, MidPoint, ATLAS cone, CMS cone,

Cone algorithms

Finding all stable cones (and hence produce an infrared and collinear (IRC) safe cone algorithm) would naively take N2^N operations

This is roughly the age of the universe for just 100 particles

Too slow. Resort to approximate methods

A long list of cones (all eventually unsafe)

Les Houches 2007 proceedings, arXiv:0803.0678

1		1			1	
S	CDF JetClu		IC _r -SM	IR ₂₊₁		
	CDF MidPoint cone	;	IC _{mp} -SM	IR ₃₊₁		
rit	CDF MidPoint search	chcone	$IC_{se,mp}$ -SM	IR ₂₊₁		
	D0 Run II cone		IC _{mp} -SM	IR ₃₊₁		
n, a						
tio	ATLAS Cone		IC-SM	IR_{2+1}		
era	PxCone		IC_{mp} -SD	IR ₃₊₁		
en						
t-0	CMS Iterative Cone		IC-PR	$Coll_{3+1}$		
	PyCell/CellJet (from	n Pythia)	FC-PR	$Coll_{3+1}$		
<u> </u>	GetJet (from ISAJE	T)	FC-PR	$Coll_{3+1}$		
IC = Iterative Cone						
SM = Split-Merge		type of	IR_{n+1} : unsafe when a soft particle is added to			
SD = Split-Drop		algorithm	n hard partic	n hard particles in a common neighbourhood		
FC = Fixed Cone			Coll _{n+1} : unsa	fe when one of n	hard particles in	
PR = Progressive Removal		Physics at the LH	a common n	eighbourhood is s	plit collinearly	

Matte

Recombination algorithms: kt

Longitudinally invariant k_t:

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

Calculate the distances between the particles: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$

Calculate the beam distances: $d_{iB} = k_{ti}^2$

Combine particles with smallest distance or, if d_{iB} is smallest, call it a jet

Find again smallest distance and repeat procedure until no particles are left

This is infrared and collinear safe, but finding all the distances is an N² operation, to be repeated N times

 \Rightarrow naively, the k_t jet algorithm scales like N³

Faster than the cone, but still too slow: about 60 seconds for 4000 particles

FastJet and SISCone

Both the N³/speed problem of k_t and the N2^N/speed/IRC safety of the cone were solved by shifting the problem from combinatorics to geometry

k_t was made fast by reducing the problem to near-neighbour searches, and using Voronoi diagrams to reduce complexity to NInN (MC, Salam, hep-ph/0512210)

Cone was made fast (and IRC safe) by inventing circular enclosures to find stable cones and reduce complexity to N²InN (Salam, Soyez, arXiv: 0704.0292)

Both implementations (and a lot more) available via FastJet <u>www.fastjet.fr</u>

Timing performances

SISCone as fast as MidPoint → no penalty for infrared safety
 Large-N region (HI collisions) now doable

Beyond k_t

One can generalise the k_{t} distance measure:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$
 $d_{iB} = k_{ti}^{2p}$

 $\mathbf{p} = \mathbf{I} \quad \mathbf{k}_{t}$ algorithm

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

Beyond k_t

One can generalise the k_{r} distance measure:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$
 $d_{iB} = k_{ti}^{2p}$

p = k algorithm S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

p = **0** Cambridge/Aachen algorithm ^{Y. Dokshitzer, G. Leder, S.Moretti and B. Webber, JHEP 08 (1997) 001 M.Wobisch and T.Wengler, hep-ph/9907280}

Beyond k_t

One can generalise the k_{r} distance measure:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2} \qquad d_{iB} = k_{ti}^{2p}$$

P = k algorithm S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

p = 0 Cambridge/Aachen algorithm ^{Y. Dokshitzer, G. Leder, S. Moretti and B. Webber, JHEP 08 (1997) 001 M. Wobisch and T. Wengler, hep-ph/9907280}

p = -1 anti-k_t algorithm

MC, G. Salam and G. Soyez, arXiv:0802.1189

NB: in anti-kt pairs with a **hard** particle with cluster first: if no other hard particles are close by, the algorithm will give **perfect cones**

Quite ironically, a sequential recombination algorithm is the perfect cone algorithm

	The IRC safe algorithms			
kt	$SR d_{ij} = min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2 hierarchical in rel P_t$	Catani et al '91 Ellis, Soper '93	NInN	
Cambridge/ Aachen	$SR \\ d_{ij} = \Delta R_{ij}^2 / R^2 hierarchical in angle$	Dokshitzer et al '97 Wengler, Wobish '98	NInN	
anti-k _t	$SR \\ d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \Delta R_{ij}^2 / R^2 \\ gives perfectly conical hard jets$	MC, Salam, Soyez '08 (Delsart, Loch)	N ^{3/2}	
SISCone	Seedless iterative cone with split-merge gives 'economical' jets	Salam, Soyez '07	N ² InN	

The IRC safe algorithms				
k t	SR $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ hierarchical in rel P _t	Catani et al '91 Ellis, Soper '93	NInN	
Cambridge/ Aachen	$SR \\ d_{ij} = \Delta R_{ij}^2 / R^2 \\ hierarchical in angle$	Dokshitzer et al '97 Wengler, Wobish '98	NInN	
anti-k _t	$SR \\ d_{ij} = min(k_{ti}^{-2}, k_{tj}^{-2})\Delta R_{ij}^{2}/R^{2} \\ gives perfectly conical hard jets$	MC, Salam, Soyez '08 (Delsart, Loch)	N ^{3/2}	
SISCone	Siscone Seedless iterative cone with split-merge gives 'economical' jets Salam, Soyez '07		N ² InN	
We call these algs 'second-generation' ones				
All are available in FastJet, <u>http://fastjet.fr</u>				

(As well as many IRC unsafe ones)

Matteo Cacciari - LPTHE

CMS and ATLAS have settled on one of the new algorithms as their default

Amazingly, they will be using the same one, **anti-k**t

CMS and ATLAS have settled on one of the new algorithms as their default

Amazingly, they will be using the same one, **anti-k**t

However, and perhaps unsurprisingly, CMS will use **R** = 0.5 and 0.7, and ATLAS 0.4 and 0.6!

While the use of an IRC safe algorithm is welcome, it's fairly unfortunate that there isn't some overlap for immediate comparisons (I'm told discussion are in progress to fix this) Tools

Remove soft contamination from a hard jet

Tag heavy objects originating the jet

Eventually leading to 'third-generation' jet algorithms

Jet substructure as tagger

Studying the **jet substructure**

(i.e. the subjets obtained by undoing the clustering of a sequential recombination algorithm) can lead to **identification capabilities** of specific objects (as opposed to 'standard' QCD background)

Boosted Higgs tagger

Boosted top tagger

Butterworth, Davison, Rubin, Salam, 2008

Kaplan, Rehermann, Schwartz, Tweedie, 2008 Thaler, Wang, 2008 G. Broojmans, ATLAS 2008

Moderately boosted top and Higgs tagger

Plehn, Salam, Spannowsky, 2009

Common feature: start with a 'fat jet', decluster it and check if it contains a complex 'hard' substructure

Boosted Higgs tagger

 $pp \rightarrow ZH \rightarrow vvbb$

Butterworth, Davison, Rubin, Salam, 2008

Boosted Higgs tagger

ZH → vvbb PP

Boosted Higgs tagger

 \rightarrow ZH \rightarrow vvbb PP

Jet substructure as filter

The **jet substructure** can be exploited to help **removing contamination** from a soft background

Butterworth, Davison, Rubin, Salam, 2008

S. Ellis, Vermilion, Walsh, 2009

Jet 'trimming'

Krohn, Thaler, Wang, 2009

Aim: limit sensitivity to background while retaining bulk of perturbative radiation

(Filtering, trimming and pruning are actually quite similar)

Cambridge/Aachen with filtering

Butterworth, Davison, Rubin, Salam, arXiv:0802.2470

An example of a **third-generation** jet algorithm

Cluster with C/A and a given R

- Undo the clustering of each jet down to subjets with radius X_{filt}R
- Retain only the **n**filt hardest subjets

Filtering in action

Butterworth, Davison, Rubin, Salam, arXiv:0802.2470

Filtering in action

Filtering in action

The low-momentum stuff surrounding the hard particles has disappeared

Jet trimming

Krohn, Thaler, Wang, 2009

- Cluster all cells/tracks into jets using any clustering algorithm. The resulting jets are called the seed jets.
- Within each seed jet, recluster the constituents using a (possibly different) jet algorithm into subjets with a characteristic radius R_{sub} smaller than that of the seed jet.
- 3. Consider each subjet, and discard the contributions of subjet i to the associated seed jet if p_{Ti} < f_{cut} · Λ_{hard}, where f_{cut} is a fixed dimensionless parameter, and Λ_{hard} is some hard scale chosen depending upon the kinematics of the event.
- 4. Assemble the remaining subjets into the trimmed jet.

Different condition for retaining jets (pT-cut rather than n_{filt} hardest) with respect to filtering

Matteo Cacciari - LPTHE

- 0. Start with a jet found by any jet algorithm, and collect the objects (such as calorimeter towers) in the jet into a list L. Define parameters D_{cut} and z_{cut} for the pruning procedure.
- Rerun a jet algorithm on the list L, checking for the following condition in each recombination i, j → p:

 $z = \frac{\min(p_{Ti}, p_{Tj})}{p_{Tp}} < z_{\text{cut}} \text{ and } \Delta R_{ij} > D_{\text{cut}}.$

This algorithm must be a recombination algorithm such as the CA or k_T algorithms, and should give a "useful" jet substructure (one where we can meaningfully interpret recombinations in terms of the physics of the jet).

- If the conditions in 1. are met, do not merge the two branches 1 and 2 into p. Instead, discard the softer branch, i.e., veto on the merging. Proceed with the algorithm.
- The resulting jet is the pruned jet, and can be compared with the jet found in Step 0.

Exclude soft stuff and large angle recombinations from clustering

Jet pruning

S. Ellis, Vermilion, Walsh, 2009

filtering + pruning + trimming

Filtering, trimming and pruning are identical in aim and spirit ('clean up' a jet, keeping the hard core but getting rid of soft contamination') but differ in details

Physics at the LHC - June 7, 2010

Jet area as a tool

Underlying event and pileup determination and subtraction

UE characterisation

Jet algorithms like kt or Cambridge/Aachen allow one to determine on an event-by-event basis

the "typical" level of transverse momentum density of a roughly uniform background noise:

MC, Salam, 2007

This ρ value can, in turn, be used to characterise the UE

Since this measurement is done with the jets, it is alternative/complementary to the usual analyses done using charged tracks (à la R. Field)

MC, Salam, Sapeta, 2009

UE characterisation Correlations at

Potential discriminating power between different Pythia tunes, Herwig, etc

Useful for tuning MCs

Background subtraction

[MC, Salam, arXiv:0707.1378]

Once measured, the background density can be used to correct the transverse momentum of the hard jets:

$$p_T^{\text{hard jet, corrected}} = p_T^{\text{hard jet, raw}} - \rho \times \text{Area}_{\text{hard jet}}$$

ρ being calculated on an event-by-event basis, this procedure will generally improve the resolution of, say, a mass peak

NB. Also be(a)ware of backreaction

(immersing a hard jet in a soft background may cause some particles belonging to the hard event to be lost from (backreaction loss) or added to (backreaction gain) the jet). Small effect for UE, larger for pileup, can be very important for heavy ions. Analytical understanding of this effect available (MC, Salam, Soyez, arXiv:0802:1188)

Matteo Cacciari - LPTHE

Example of pileup subtraction

Let's discover a leptophobic Z' and measure its mass:

Mass reconstruction

The value of R matters because it affects, in opposite ways, a number of things:

Small R:Limit underlying event and pileup contaminationBetter resolve many-jets events

Large R: Limit perturbative radiation loss ('out-of-cone') Limit non-perturbative hadronisation effects

The best compromise will in general depend on the specific observable

Analytical estimates, Dasgupta, Magnea, Salam, arXiv:0712.3014

Mass reconstruction

Mass reconstruction

Background subtraction

 $\rho_L = factor of luminosity needed to obtain equivalent signal/background significance
 k_t C/A anti-k_t SISCone C/A-filt$

"How (much) a jet changes when immersed in a background"

Without background

"How (much) a jet changes when immersed in a background"

Without background

"How (much) a jet changes when immersed in a background"

Without background

With background

"How (much) a jet changes when immersed in a background"

Without background

With background

MC, Salam, Soyez, arXiv:0802.1188

Anti-kt jets are much more resilient to changes from background immersion

Heavy lons

Many of the jet techniques just described can also be considered for heavy ions

In particular, one can perform background determination and subtraction (about 250 GeV per unit area at LHC!)

Residual bias after subtraction

(anti-k_t doing better due to its soft-resiliency leading to vanishing back-reaction)

Flexibility

All IRC safe algorithms are equal, but some are more equal than others

Depending on the analysis you wish to perform, a jet definition might give better results than others

The IRC safe algorithms

	Speed	Regularity	UE	Backreaction	Hierarchical substructure
k _t	0000	Ţ	ŢŢ		⊙ ⊙
Cambridge /Aachen	000	Ţ	Ţ		\odot \odot \odot
anti-k _t	000	00	♣/☺	☺ ☺	×
SISCone	\odot	•	00	•	×

An extensive set of fast, IRC safe jet algorithms exists, offering replacements for the IRC unsafe ones.

- \Box
- An extensive set of fast, IRC safe jet algorithms exists, offering replacements for the IRC unsafe ones.
- Ø
- They offer ample **flexibility** in choosing the most effective jet definition for any given analysis.

- \Box
- An extensive set of fast, IRC safe jet algorithms exists, offering replacements for the IRC unsafe ones.
- They offer ample **flexibility** in choosing the most effective jet definition for any given analysis.
- $\mathbf{\overline{\mathcal{S}}}$

They can be used to estimate the level of a uniformly distributed noise, study its characteristics, and subtract from the hard jets, improving the quality of kinematical reconstructions.

- \Box
- An extensive set of fast, IRC safe jet algorithms exists, offering replacements for the IRC unsafe ones.
- They offer ample **flexibility** in choosing the most effective jet definition for any given analysis.
- They can be used to estimate the level of a uniformly distributed noise, study its characteristics, and subtract from the hard jets, improving the quality of kinematical reconstructions.
- 'Third-generation' algorithms exploiting jet substructure look very promising.