Non-Standard SUSY Higgs Signals

Eduardo Pontón

Physics at the LHC 2010, June 8

Puneet Batra and EP (PRD 79, 035001; arXiv:0809.3453)

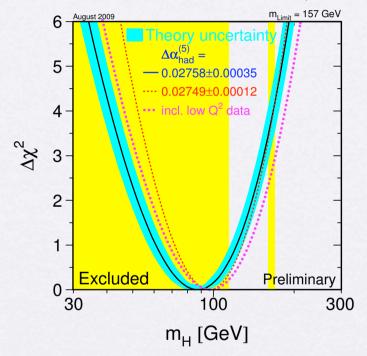
M. Carena, KC Kong, EP and J. Zurita (PRD 81, 015001; arXiv:0909.5434)

M. Carena, EP and J. Zurita (arXiv:1005.4887)

Electroweak Symmetry Breaking

- Good experimental evidence for *spontaneously* broken $SU(2)_L \times U(1)_Y$ gauge symmetry
 - Symmetry unbroken in the vertices (couplings to fermions and gauge self-interactions)
 - Symmetry badly broken in the spectrum (spin-1 longitudinal polarizations, "up-down" fermion mass splittings)
 - → Evidence for a ``Higgs sector"
- But details of the mechanism for EWSB remain elusive...

Limited knowledge from precision measurements:


$$M_W^2 \approx M_Z^2 \cos^2 \theta_W$$
 \longrightarrow Bulk of EWSB due to a weak isospin doublet (either elementary or composite)

Establishing the precise mechanism one of the most important goals at the LHC

The Standard Model

• On the whole good agreement for a single SU(2) doublet with

$$114 \text{ GeV} < m_H < 186 \text{ GeV} (95\% \text{ CL})$$

(if nothing else out there)

New physics must be well-hidden!

(Heavy or loop-level effects)

"SUSY" (or the MSSM)

- Two Higgs doublets, $H_u(Y = +\frac{1}{2})$ and $H_d(Y = -\frac{1}{2})$ (Type II THDM)
- At tree-level: quartic couplings related to gauge couplings (squared)
 - \longrightarrow Light SM-like Higgs $m_h < m_Z$ (but not seen at LEP)
- Important loop-level corrections from top-stop sector, but still $m_h \lesssim 135~{
 m GeV}$

``SUSY" expectation: SM-like Higgs in $b\bar{b}$ channel at the Tevatron $\tau\bar{\tau}$ (or $\gamma\gamma$) channels at the LHC

Note that these couplings not as directly related to EWSB as hWW or hZZ

Non-standard Higgses: may require large $\tan \beta$ enhancement for production

Again: connection to EWSB somewhat remote

Beyond the MSSM

Perhaps SUSY Higgs sector non-minimal...

e.g. singlet extensions lead to larger Higgs mass

In fact: BMSSM physics can easily change MSSM expectations for Higgs physics

... even if somewhat heavy (with mass $M\gg v_{\rm EW}$)

(may or may not be directly observed at the LHC)

Why?

Beyond the MSSM

Higgs quartic couplings in MSSM at tree level:

$$V \supset \frac{1}{2} \lambda_{1} (H_{d}^{\dagger} H_{d})^{2} + \frac{1}{2} \lambda_{2} (H_{u}^{\dagger} H_{u})^{2} + \lambda_{3} (H_{u}^{\dagger} H_{u}) (H_{d}^{\dagger} H_{d}) + \lambda_{4} (H_{u} H_{d}) (H_{u}^{\dagger} H_{d}^{\dagger})$$

$$\lambda_{1} \pm \left\{ \frac{1}{22} \lambda_{5\frac{7}{4}} H_{u}^{2} H_{u}^{2} \right\}_{0}^{2/2} \left[\lambda_{6} (H_{a}^{\dagger} H_{d}^{3} + \frac{1}{4} (g^{2} + H_{u}^{3})^{2} + \frac{g^{2}}{2} h.c. \right\}$$

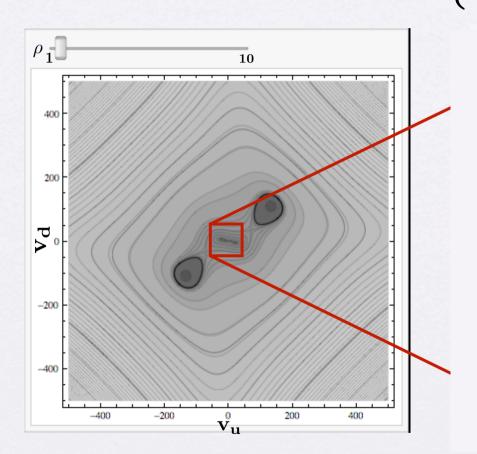
Effective field theory with heavy fields integrated out easily explains large effects

At leading order:
$$W = \mu H_u H_d + \frac{\omega_1}{2M} (H_u H_d)^2 + \cdots$$

(plus a SUSY breaking operator)

See also: Brignole, Casas, Espinosa, Navarro, '03 Dine, Seiberg, Thomas, '07 Antoniadis et. al. '07 ...

$$\lambda_5, \lambda_6, \lambda_7 = \mathcal{O}(1/M)$$


Qualitatively new effects, e.g. `instabilities" controlled by higher-dimension operators in the scalar potential (THDM not the whole story)

Minima from Infinity

(Batra & EP, 2008)

Scaling $M \to \rho M$ with $\rho \in [1, 10]$

sEWSB Minimum $\propto \sqrt{\rho}$ MSSM-like Minimum \rightarrow const.

A technical point...

Second order in 1/M expansion can be as important as the leading order...

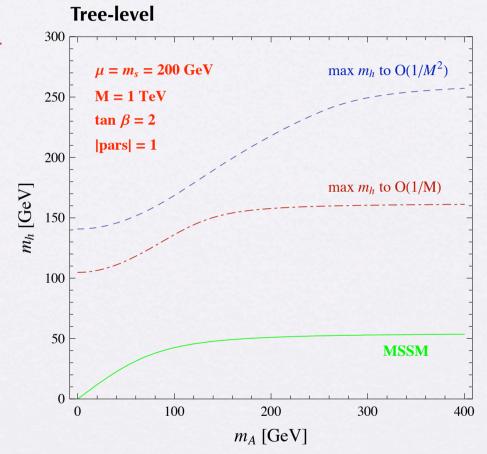
However, this does not mean mean the 1/M expansion breaks down...

... in the following it does not!

Thus:

- More parameters to consider
- More handles to (try to) infer the UV completion

(Carena, Kong, EP & Zurita, 2009)


Here, treat coefficients as independent, and scan over [-1,1] \longrightarrow survey collider phenomenology

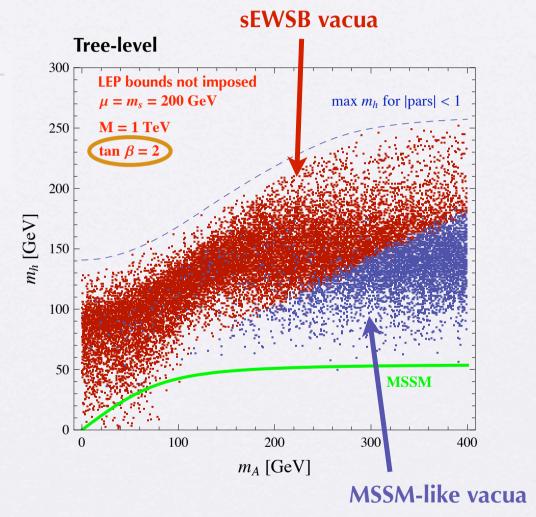
Beyond leading order (spectrum)

(Carena, Kong, EP & Zurita, 2009)

Maximize m_h assuming dimensionless parameters below 1

(But higher orders should have smaller effects)

Beyond leading order (spectrum)


(Carena, Kong, EP & Zurita, 2009)

Maximize m_h assuming dimensionless parameters below 1

(But higher orders should have smaller effects)

At small $\tan \beta$: Large fraction of sEWSB vacua

(Smaller fraction at large $\tan \beta$)

Scan: $|\omega_1|, |c_4|, |c_6|, |c_7| \in [0, 1]$ and $|\alpha_1|, |\beta_i|, |\gamma_i|, |\delta_i| \in [1/3, 1]$ for i = 4, 6, 7 (assume all real)

Assumptions

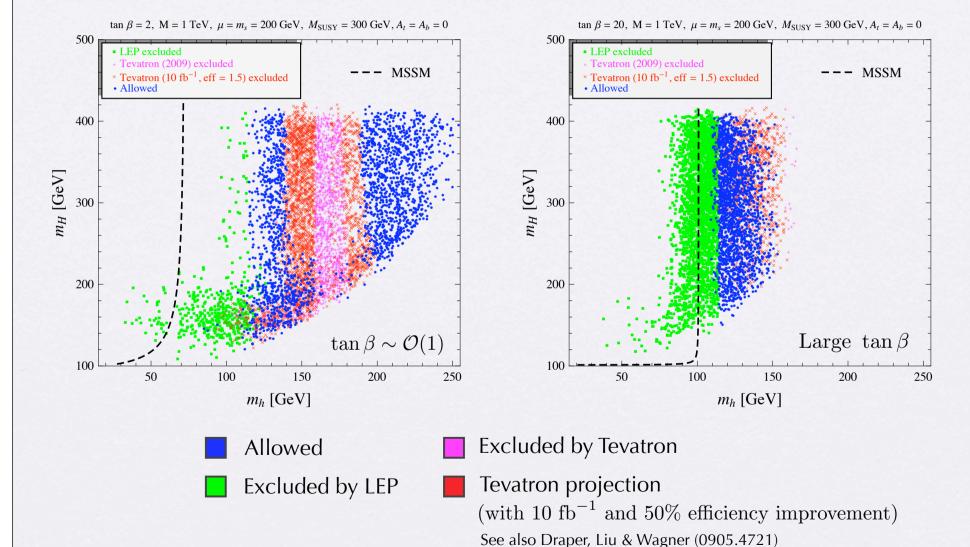
- ullet Heavy physics characterized by a scale $M\gtrsim 1~{
 m TeV}$
- SUSY breaking in MSSM and heavy sectors of same order, and $m_S \sim {
 m few} \ {
 m hundred} \ {
 m GeV}$
- Main modification in Higgs sector (matter sector more constrained)
- → Superspace language, classify higher-dimension operators at super- and Kähler potential level
- → SUSY breaking via spurion superfield

Predictions for a relatively "generic" SUSY extension, with SUSY broken at the EW scale

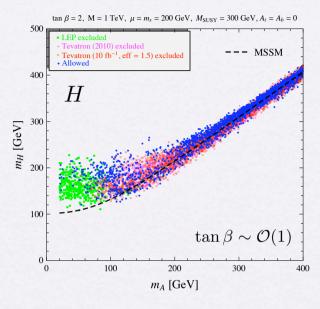
Constraints

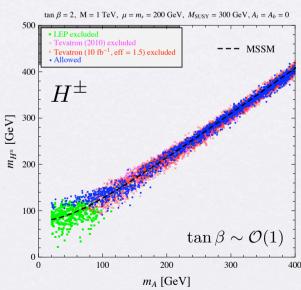
- *Robustness*: study points expected to be insensitive to higher orders in 1/M expansion (danger of accidental cancellations in lowest orders, rather than breakdown of EFT!)
- **Several minima**: ensure global, no charge/color breaking, and no **QP** (for simplicity), in EFT.
- *EW precision constraints*: heavy physics, modified MSSM Higgs spectrum + sparticles Mild cancellations in e.g. Peskin-Takeuchi T parameter allowed
- Current direct collider bounds from LEP and Tevatron

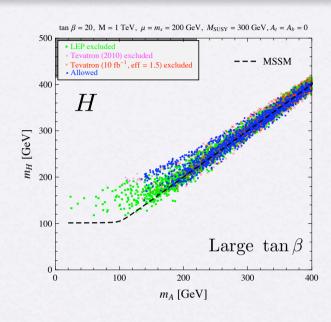
HiggsBounds $+H^{\pm}$ Weiglein & Williams, 2008) +decay-mode-independent

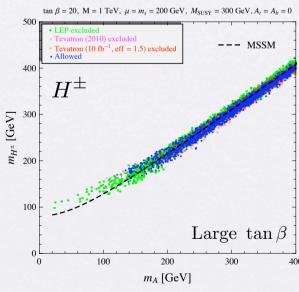

• We do not consider indirect, flavor-dependent bounds, e.g. from $b \to s \gamma$ (depend on details of SUSY sector, model-dependent)

(Bechtle, Brein, Heinemeyer,

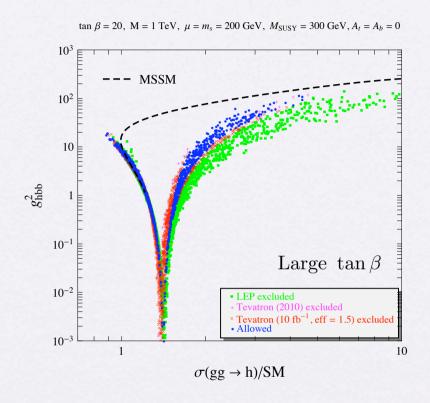

Selected Results...

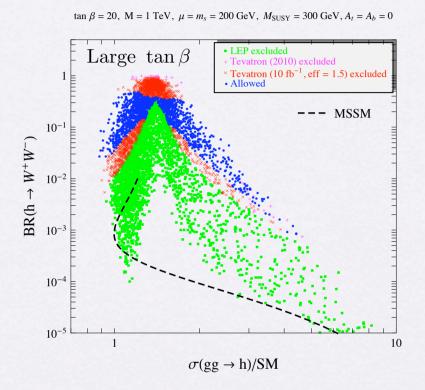

CP-even Higgses and Current Bounds


Carena, EP & Zurita, 2010



Non-Standard Higgs Masses




- Corrections decrease at large m_A
- Significant mass splittings between m_A, m_H, m_{H^\pm}
- Multi-Higgs decay channels can open:

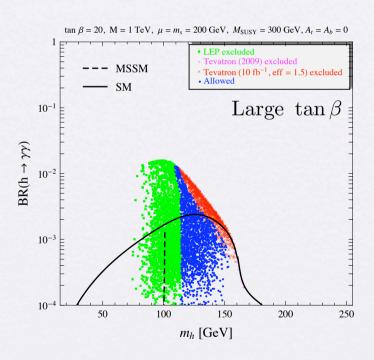
$$h/H \to AA$$

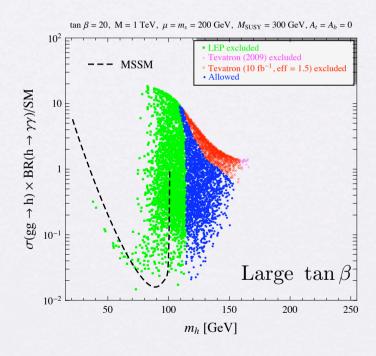
 $H^{\pm} \to AW^{\pm}$

But
$$H/A \to hh$$

$$H^\pm \to hW^\pm$$
 typically closed

Suppressed couplings of h to bb


- Region associated with suppressed $b\bar{b}$ \longrightarrow enhanced ${\rm BR}(h \to W^+W^-)$
- Also at low $\tan \beta$, suppressed $b\bar{b}$ associated with enhanced gluon fusion cross-section!


Sensitivity at Tevatron to the light CP-even Higgs

Enhancements elsewhere

Suppression of bb leads to enhancement of other channels across the board

- Decays into gg and quarks → large BR into jets
- But also enhancement into gauge bosons or taus
- As well as rare decays like $\gamma\gamma$...

At low $\tan \beta \longrightarrow \text{similar to SM rate}$

An example

An ``unusual" SUSY spectrum: (in GeV)

m_h	m_H	m_A	m_{H^\pm}
172	197	110	167

$$\tan \beta = 2$$

Main decay modes: (BRs)

$$\begin{array}{c|c}
h \to b\bar{b} & h \to WW \\
\hline
0.05 & 0.91
\end{array}$$

$$\begin{array}{|c|c|c|} \hline H \rightarrow WW & H \rightarrow ZZ \\ \hline 0.73 & 0.25 \\ \hline \end{array}$$

Note: here H is ``SM-like"
$$\ g_{hZZ}^2/SM = 0.2$$

$$\ g_{HZZ}^2/SM = 0.8$$

$$\begin{array}{c|cccc}
H^{\pm} \rightarrow \tau \nu_{\tau} & H^{\pm} \rightarrow W^{\pm} A \\
\hline
0.43 & 0.20
\end{array}$$

$A o b ar{b}$	$A o auar{ au}$	
0.9	0.1	

h can be excluded at Tevatron (with $10~{\rm fb}^{-1}$ and 50% efficiency improvement):

Heavy CP-even Higgs observable at LHC in 4-lepton ``gold-plated" mode:

$$\sigma(gg\to H)\times {\rm BR}(H\to ZZ)/{\rm SM}\approx 0.5$$

May observe both H^+ and A in top decays

Summary

Collider phenomenology can be understood from:

Suppression/enhancement in relevant channels

- Interesting suppression in $b\bar{b}$ couplings \longrightarrow enhancement in easier channels
 - WW at the Tevatron potentially very interesting
 - Potentially spectacular enhancements in $\gamma\gamma$

Altered Higgs spectrum: heavier, ``unusual" mass splittings

- Both CP-even Higgses `heavy" with significant decays into gauge bosons Potential to map in detail the physics of EWSB!
- Decay chains such as $h/H \to AA$ and $H^+ \to AW^+$ (e.g. with H^+ from top decays)
 - Multiple Higgs signals (no need for large $\tan \beta$ to test full 2HDM)

Conclusions

Observation of

- ``Light" superpartners (e.g. strongly interacting scalars) → It's SUSY!
- Unusual SUSY Higgs sector, e.g.
 - At least a SM-like Higgs heavier than 135 GeV ...
 - ... or unexpected properties such as large enhancement in diphoton channel
 - More than one scalar with non-negligible couplings to Z's and W's, and significant decays in these channels
- → Clear signal for BMSSM.

This broad information can be useful to infer nature of physics ``around the corner":

- Recall that e.g. heavy singlets may be hard to see directly
- But if new physics is accessible, a rather interesting cross check would be possible

"The SUSY 2HDM"

Carena, Kong, EP & Zurita, 2009

Superpotential:
$$W = \mu H_u H_d + \frac{\omega_1}{2M} (H_u H_d)^2 + \frac{\omega_2}{3M^3} (H_u H_d)^3 + \cdots$$

with $\omega_1, \omega_2, \ldots$ "free" dimensionless parameters (fixed by UV physics)

Corrections to Kähler potential:

$$\Delta K^{\text{non-cust.}} = \frac{c_1}{M^2} (H_d^{\dagger} e^V H_d)^2 + \frac{c_2}{M^2} (H_u^{\dagger} e^V H_u)^2 + \frac{c_3}{M^2} (H_u^{\dagger} e^V H_u) (H_d^{\dagger} e^V H_d) + \cdots$$

$$\Delta K^{\text{Custodial}} = \frac{c_4}{M^2} |H_u H_d|^2 + \left[\frac{c_6}{M^2} H_d^{\dagger} e^{2V} H_d + \frac{c_7}{M^2} H_u^{\dagger} e^{2V} H_u \right] (H_u H_d) + \text{h.c.} + \cdots$$

Plus SUSY breaking via spurion $X = m_S \theta^2$

UV completions: singlets, triplets, Z's, W's can generate all of these with arbitrary coefficients (exception: c_6 and c_7 , but main points do not depend strongly on these)

But note: different UV theories generate subsets of op's, sometimes with definite signs

→ handle to infer UV details from Higgs properties

Here, treat coefficients as independent, and scan over [-1,1] \longrightarrow survey collider phenomenology

UV Completions: Singlets

Example 1: singlets

$$B_{\mu}\text{-term}$$

$$W=\mu H_u H_d + \frac{1}{2} M_S S^2 + \lambda_S S H_u H_d - \left(X \left(a_1 \mu H_u H_d\right) + \frac{1}{2} a_2 M_S S^2 + a_3 \lambda_S S H_u H_d\right)$$

$$K = H_u^{\dagger} e^V H_u + H_d^{\dagger} e^V H_d + S^{\dagger} S - X^{\dagger} X \left(b_1 H_d^{\dagger} H_d + b_2 H_u^{\dagger} H_u + b_3 S^{\dagger} S \right)$$

Soft masses: $m_{H_d}^2, m_{H_u}^2, m_S^2$

Integrating out the singlet:

$$M = M_S$$
, $\omega_1 = -\lambda_S^2$, $\alpha_1 = a_2 - 2a_3$, $c_4 = |\lambda_S|^2$, $\gamma_4 = a_2 - a_3$, $\beta_4 = |a_2 - a_3|^2 - b_3$

Note $c_4 > 0$, other arbitrary

UV Completions: Triplets

Example 2: triplets with $Y = \pm 1$

$$W \supset M_T T \bar{T} + \frac{1}{2} \lambda_T H_u T H_u + \frac{1}{2} \lambda_{\bar{T}} H_d \bar{T} H_d$$
$$+ X \left(a_2 M_T T \bar{T} + \frac{1}{2} a_3 \lambda_T H_u T H_u + \frac{1}{2} a_4 \lambda_{\bar{T}} H_d \bar{T} H_d \right)$$

$$K \supset T^{\dagger}e^{2V}T + \bar{T}^{\dagger}e^{2V}\bar{T} + XX^{\dagger} \left(b_3T^{\dagger}T + b_4\bar{T}^{\dagger}\bar{T}\right)$$

Integrating out the triplets:

$$M = M_T , \qquad \omega_1 = \frac{1}{4} \lambda_T \lambda_{\bar{T}} , \qquad \alpha_1 = a_2 - a_3 - a_4 ,$$

$$c_1 = \frac{1}{4} |\lambda_{\bar{T}}|^2 , \qquad \gamma_1 = a_2 - a_4 , \qquad \beta_1 = |a_2 - a_4|^2 - b_3 ,$$

$$c_2 = \frac{1}{4} |\lambda_T|^2 , \qquad \gamma_2 = a_2 - a_3 , \qquad \beta_2 = |a_2 - a_3|^2 - b_4 ,$$

Induce custodially violating ops.

Note $c_1, c_2 > 0$, other arbitrary

$$(\Delta T < 0)$$

UV Completions: Triplets

Example 2: triplets with $Y = \pm 1$

$$W \supset M_T T \bar{T} + \frac{1}{2} \lambda_T H_u T H_u + \frac{1}{2} \lambda_{\bar{T}} H_d \bar{T} H_d$$
$$+ X \left(a_2 M_T T \bar{T} + \frac{1}{2} a_3 \lambda_T H_u T H_u + \frac{1}{2} a_4 \lambda_{\bar{T}} H_d \bar{T} H_d \right)$$

$$K \supset T^{\dagger}e^{2V}T + \bar{T}^{\dagger}e^{2V}\bar{T} + XX^{\dagger} \left(b_3T^{\dagger}T + b_4\bar{T}^{\dagger}\bar{T}\right)$$

For triplets with $Y = 0 \rightarrow \lambda_T H_u T H_d$

$$M = M_T , \qquad \omega_1 = -\frac{1}{4}\lambda_T^2 , \qquad \alpha_1 = a_2 - 2a_3 ,$$
 Induce custodially viola
$$c_3 = \frac{1}{2}|\lambda_T|^2 , \qquad \gamma_3 = a_2 - a_3 , \qquad \beta_3 = |a_2 - a_3|^2 - b_3 ,$$
 Note $c_3 > 0 \ (\Delta T > 0),$
$$c_4 = -\frac{1}{4}|\lambda_T|^2 , \qquad \gamma_4 = a_2 - a_3 , \qquad \beta_4 = |a_2 - a_3|^2 - b_3 ,$$
 and $c_4 < 0!$

Induce custodially violating ops.

Note
$$c_3 > 0 \ (\Delta T > 0)$$
 and $c_4 < 0!$

UV Completions: Gauge Extensions

Example 3: W primes
$$SU(2)_1 \times SU(2)_2 \xrightarrow{\Sigma} SU(2)_D$$

$$\sum_{u,d} (2,2)$$
 $Example 3: W primes $SU(2)_1 \times SU(2)_2 \xrightarrow{\Sigma} SU(2)_D$$

$$K = H_u^{\dagger} e^{g_1 V_1} H_u + H_d^{\dagger} e^{g_1 V_1} H_d + \frac{2M_{V'}^2}{(g_1^2 + g_2^2)} \operatorname{Tr} \left[e^{g_2 V_2} e^{g_1 V_1} \right]$$

Integrating out the triplets: $(\tilde{g} = g_1^2/\sqrt{g_1^2 + g_2^2})$ is the coupling of V' = W')

$$K_{\text{eff}} \supset -\frac{\tilde{g}^2}{8M_{V'}^2} \left\{ \left(H_u^{\dagger} e^{gV} H_u + H_d^{\dagger} e^{gV} H_d \right)^2 - 4 \left| H_u \epsilon H_d \right|^2 \right\}$$

Now $c_1, c_2, c_3 < 0!$

$$c_1 = -\frac{1}{4}\tilde{g}^2$$
, $c_2 = -\frac{1}{4}\tilde{g}^2$, $c_3 = -\frac{1}{4}\tilde{g}^2$, $c_4 = \frac{1}{2}\tilde{g}^2$,

For U(1)' case: similar, but $c_4=0$, and depends on Higgses U(1)' charges

EW Precision Constraints

1. Tree-level effects due to new physics:

$$\alpha T^{\text{Tree}} = -\frac{v^2}{2M^2} \sin^4 \beta \left[c_2 - 2(\tan \beta)^{-2} c_3 + (\tan \beta)^{-4} c_1 \right]$$

- 2. Effects from MSSM Higgs sector:
 - Heavier SM-like Higgs
 - Mass splittings among non-standard Higgses

Loop-level contr. to S and T

3. Custodially violating mass splittings in SUSY sector

Here: require that $-0.4 < T^{\text{Tree}} + T^{\text{Higgs}} < 0.3$ (S is small)

Consistent with $-0.2 < T^{\text{Total}} < 0.3 \ (95\% \ C.L.)$ for $0 < T^{\text{SUSY}} < 0.2$

(see e.g. Medina, Shah & Wagner, 2009)