Tracking and Alignment in LHCb

Florin MACIUC on behalf of LHCb collaboration

florin.maciuc@mpi-hd.mpg.de

Max-Planck Institute for Nuclear Physics Heidelberg

Physics at LHC 2010 Hamburg – p. 1/22

LHCb and B-physics

- LHCb Large Hadron Collider beauty detector.
- LHCb aims lay primary in the B-physics sector.
- Nominal luminosity of about $2 \times 10^{32} cm^{-2} s^{-1} \Longrightarrow 10^{12} b\bar{b}$ per year.
- The dominant channel behavior explains the single-arm forward spectrometer geometry chosen for LHCb.

Gluon fusion before fragmentation forward beaming of $b\bar{b}$ in the LHCb frame

LHCb Detector

LHCb Detector

VErtex LOcator

- Primary Vertex (PV) is inside VELO, towards middle;
- VELO is a retractable detector, 2 VELO sides:
 * To protect from damage, VELO is in Open position before the beam is stable, and closed afterward.
 - * Open VELO: sensors 30 mm further from the beam,
 - * Closed VELO: sensors are about 8 mm from the beam line,

VELO double-sensor modules: $R+\phi$

Schematic: one side of VELO

VErtex LOcator

- Primary Vertex (PV) is inside VELO, towards middle;
- VELO is a retractable detector, 2 VELO sides:
 * To protect from damage, VELO is in Open position before the beam is stable, and closed afterward.
 - * Open VELO: sensors 30 mm further from the beam,
 - * Closed VELO: sensors are about 8 mm from the beam line,

Schematic VELO sensors in Open and Closed positions

Primary Vertex Resolution

- Primary Vertex (PV) is determined with VELO tracks.
- Method: randomly split event track container in two, and reconstruct PV.
- Results close to expected,
 ★ A residual ≈ 40 % difference e.g. when using 25 tracks.
 ★ Improving.

PV resolution vs track used, real data

PV resolution vs track used, MC

	MC	Data
$\Delta x(\mu m)$	11.5	15.8
$\Delta y(\mu m)$	11.3	15.2
$\Delta z(\mu m)$	57	91

Impact Parameter Resolution

- Impact parameter (IP) Closest approach to PV of a track.
- IP resolution is determined primarily by:
 * random scattering in VELO material, VELO misalignments and hit resolutions.
- IP resolution for MC and data given.

Impact Parameter Resolution

- Impact parameter (IP) Closest approach to PV of a track.
- IP resolution is determined primarily by:
 * random scattering in VELO material, VELO misalignments and hit resolutions.
- IP resolution for MC and data given.
- 15-40 % difference between MC and data.
- Accounted for already.
 - * Some disagreement in material description of MC.
 - * Misalignment between VELO sides.
- Remaining:
 - residual misalignments of sensors, $\gtrsim 4.4 \mu m$,
 - too optimistic hit resolution in MC,
 - charge sharing.

Alignment Status of Subdetectors

- Optical alignment of VELO, OT, IT, TT : Survey.
- Updated software alignment Aligned.
- Monte Carlo results: black histograms.
- $\mathbf{R}_{track} \mathbf{R}_{hit}$, measurement residual distribution gauges the alignment quality.

Velo R residuals MC ******0.14 RMS 0.01376 Velo R residuals Surve 0.12 LHCb 2010 Preliminary **RMS 0.01879** 0.1 /elo R residuals Aligne 0.08 RMS 0.01555 0.06 0.04 0.02 0.1 -0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 0.1 0 residuals (mm)

VELO R-sensor residuals

Physics at LHC 2010 Hamburg – p. 7/22

Alignment Status of Subdetectors

- Optical alignment of VELO, OT, IT, TT : Survey.
- Updated software alignment Aligned.
- Monte Carlo results: black histograms.
- $\mathbf{R}_{track} \mathbf{R}_{hit}$, measurement residual distribution gauges the alignment quality.

Silicon Trackers: Hit Resolution

- 40-50% difference between Monte Carlo and Data for IT and TT.
- IT and TT are single-sided silicon strip detectors.
- One source of disagreement was found in the charge sharing between neighboring strips.
 - \star This effect was overestimated in MC.
 - \star After correction: an increase from 40 μm to 50 μm for IT hit resolution.
- We expect residual misalignments to account for the rest.

charge sharing between two strips

larger cluster of strips improve measurement resolution

Long Track Efficiency

- Long track efficiency obtainable from K_S candidates.
- Method:
 - \star Finds VELO segment and the associated CALO cluster,
 - * Gets Long tracks from reconstruction,
 - * K_S Candidates 1: VELO+CALO track and a Long track, * K_S Candidates 2: 2 Long tracks.
- The method supplies IT/OT/TT efficiency in tracking.
- Results close to 100%, with MC and data agreement.

Long-Long K_S candidates, mass plot

Efficiency as a function p_T

An Other Method for Track Efficiency

- Method, phase 1:

 For all VELO segments, finds a corresponding CALO cluster in the bending plane (x,z)
 Checks in the non-bending (z, y) plane,
 Fits track VELO+CALO,
- Phase 2:
 - \star IT/OT/TT segments are matched to the found track.
 - \star the previous segments are provided by the various Pattern-Recognition algorithms.

An Other Method for Track Efficiency

- Method, phase 1: \star For all VELO segments, finds a corresponding CALO cluster in the bending plane (x,z) \star Checks in the non-bending (z, y) plane,
 - ★ Fits track VELO+CALO,
- Phase 2:
 - \star IT/OT/TT segments are matched to the found track.
 - \star the previous segments are provided by the various Pattern-Recognition algorithms.

Difference in y for the track and CALO cluster includes only VELO+CALO tracks, which position, includes all VELO+CALO tracks

have an associated Downstream segment

VELO

TT

CALO

IT and OT

Particle Zoo

- Mass values of several detected particle agree with the PDG values to per mil level.
- Small signal widths , e.g. 2.8 MeV for Λ , 2.7 MeV Ξ^- , 8.5 MeV D^0 , 2.5 MeV Ω , etc.

Physics at LHC 2010 Hamburg – p. 11/22

Summary and Conclusions

- Already more than 100 Million 7 TeV Collisions in the 2010 LHCb data.
- Main conclusion: Alignment and tracking are in good shape for physics analysis.
- Monitoring of alignment and tracking quality in progress.
- Already done gradual improvements in:
 - Detector description,
 - Tracking tools,
 - Alignment.
- As result, MC and data reconstruction give a better agreement.
- More to do ... but "Terra Nova" / "Terra Incognita" in sight, as we reconstruct particles from 7 TeV pp collisions with high precision.

Backup Slides

Physics at LHC 2010 Hamburg – p. 13/22

Impact Parameter (IP)

• 2010 data , VELO Closed

VELO Sensor Alignment

Sensor alignment correction for 88 sensors 168 DoF in X and Y

Physics at LHC 2010 Hamburg – p. 15/22

Residual Distributions for IT

Primary Vertex Z

PV resolution vs track used PV resolution vs track used MC real data Z resolution Z resolution Geolution (mm) 0.25 0.2 0.2 0.15 (E 0.25 U 0.2 U 0.2 U 0.2 U 0.2 χ^2 / ndf χ^2/ndf 29.87 / 20 35.53 / 20 Prob 0.07191 Prob 0.01747 Z res 0.2854 ± 0.002946 Z res 0.456 ± 0.00286 0.2 LHCb Preliminary LHCb VELO Preliminary $\sqrt{s} = 7$ TeV MC \sqrt{s} = 7 TeV Data 0.1 0.1 0.05 0.05 10 15 20 25 35 40 30 10 15 20 25 30 35 40 nTracks nTracks

VELO Stability, Sensor Alignment

- VELO retractable: Left/Right sides.
 - \star VELO is closed after stable beam conditions fulfilled.
- Primary Vertex reconstruction with tracks from separate sides.
 * Difference gives an estimate of misalignment between VELO sides.

 ΔX difference of PV (μm)

VELO Stability, Sensor Alignment

- VELO retractable: Left/Right sides.
 - \star VELO is closed after stable beam conditions fulfilled.
- Primary Vertex reconstruction with tracks from separate sides.
 * Difference gives an estimate of misalignment between VELO sides.

 ΔY difference of PV (μm)

VELO Stability, Sensor Alignment

- VELO retractable: Left/Right sides.
 - * VELO is closed after stable beam conditions fulfilled.
- Primary Vertex reconstruction with tracks from separate sides.
 * Difference gives an estimate of misalignment between VELO sides.

 ΔZ difference of PV (μm)

Tracking Methods and Alignment

- Reconstruction phase:
 * various pattern recognition algorithm + Kalman-Filter tracking.
- Runge-Kutta extrapolator to deal with highly inhomogeneous field in the tracking stations.

Tracking Methods and Alignment

- Reconstruction phase:
 * various pattern recognition algorithm + Kalman-Filter tracking.
- Runge-Kutta extrapolator to deal with highly inhomogeneous field in the tracking stations.
- "Closed-form" alignment methods used:
 * Alignment with track model based on Kalman-Filter,
 * An alignment based on Millepede method, with parametrized trajectory Volker Blobel,
- Equivalent methods, χ^2 minimization over alignment and track parameters simultaneously.

Impact Parameter and Material

RF-foil divides Sides of VELO and prevents outgasing.

Silicon Trackers: Hit Resolution

- The charge sharing depends relatively strongly on the track slope.
- Note for the experts: previous fact is detrimental to some of the alignment parameters which couple strongly to the track slope.

Downstream Tracks, Mass Resolutions

- The best physics candidates are made from Long tracks.
- Long lived particles: e.g., K_S and Λ may decay outside VELO.

• Hence, some physics studies are possible even without VELO...

