June 11th, 2010

Charm Physics Results and Prospects at LHCb

Jörg Marks University of Heidelberg

for the

Collaboration

Outline

After a successful startup, LHC is constantly improving its "performance" with the aim to reach $\mathcal{L} \approx 10^{31} \, cm^{-2} s^{-1}$ by end of the year.

The road to design luminosity values implies a big opportunity for charm physics at LHCb.

- LHCb experiment
- Run 2010/11 and LHCb trigger in view of charm physics
- Open charm signals
- LHCb prospects in charm mixing and CP violation
 - \clubsuit Time dependent mixing measurements in tagged $D^{\,\cdot} \to K\pi$
 - \clubsuit y_{CP} measurement from lifetime differences
 - Direct CP violation SCS 3-body decays
 - ***** Rare decays: $D^+ \rightarrow \mu\mu$ see talk by Justine Serrano
- Summary

8

Run 2010 / 2011

LHC startup in 2010

•
$$E_{_{CM}} = 14 \text{ TeV} \rightarrow E_{_{CM}} = 7 \text{ TeV}$$

• 2010 up to
$$\mathcal{L} \approx 10^{31} cm^{-2} s^{-1}$$

• $\int \mathcal{L} \approx 1 \, pb^{-1}$ ICHEP 2010
 $\approx 100 \, pb^{-1}$ end of 2010

Expectations for 2011

• Cross section

- $\int_{2011} \mathcal{L} \approx 1 \, f b^{-1}$ small reduction in statistical precision
- LHCb should reach nominal physics performance in 2011

Trigger Overview

- Hardware Trigger (L0) based on VELO, Calorimeter and Muonsystem
 - Select on p_T objects: $h, \mu, \mu\mu, e^{\pm}, \gamma, \pi^0$
 - Obtain p-p interaction and multiplicity information

- Two level software trigger based on partly / fully reconstructed objects fully reconstructed objects with all detector information
 - Confirm L0 trigger objects using reconstr. and combined detector information
 - Select on displaced vertices using VELO
 - Use reconstructed objects for exclusive selections and inclusive streams with clear signiture
 - > All thresholds are optimized for B selection prompt D production: $\epsilon_{prompt D} \approx 10\%$

 \rightarrow still a large sample of D

Trigger - Run 2010 / 2011

Trigger schemes

Charm Production at LHCb

$D^0 \to K\pi$ Decays

\succ Untagged and tagged D^0 mass spectra

Trigger
$$-D^0 \to K\pi$$

> Trigger performance on tagged $D^0 \rightarrow K\pi$ minimum bias data

Hardware and first stage software trigger efficiency of selected $D^* \to \pi_s(D^0 \to K\pi)$ data in the low luminosity setup $\epsilon_{L0*HLT1}^{data} = 60 \pm 4\%$

 $> p_{T}$ and impact parameter dependence of the software Trigger

Physics at LHC 2010: Charm Physics Results from LHCb

D^0 Lifetime

\succ Estimate of the D^0 lifetime in untagged decays

lifetime acceptance due to selection and software trigger

- Estimated lifetime is compatible with the PDG value
- In MC we obtain in prompt and secondary charm tagged $D^0 \to K\pi$ decays $\sigma_t \approx 0.040 \, ps$ LHCb: $\frac{\sigma_t}{\tau_{D^0}} \approx 1/10$ BABAR: $\frac{\sigma_t}{\tau_{D^0}} \approx 1/2$

Jörg Marks

interactions.

Physics at LHC 2010: Charm Physics Results from LHCb

 $\Gamma_1 - \Gamma_2$

$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

interaction. They can mix through weak

The time evolution is obtained by

- $\mathbf{>}$

 $\frac{M}{M_1 - M_2} = \frac{M_1 - M_2}{\Gamma}$

$$|D_{1,2}\rangle = p|D^0
angle \mp q|ar{D}^0
angle \qquad D_1: \ {\sf CP} \ {\sf even} \ |D_{1,2}(t)
angle = e^{-i(M_{1,2}-i\Gamma_{1,2}/2)t}|D_{1,2}(t=0)
angle \qquad D_2: \ {\sf CP} \ {\sf odd}$$

Neutral D⁰ mesons are created as flavor eigenstates of the strong

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{-}(t) \\ \bar{D}^{0}(t) \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} D^{-}(t) \\ \bar{D}^{0}(t) \end{pmatrix}$$

The physical eigenstates are D₄ and D₅:

 \succ Define mass and lifetime differences of D₁ and D₂:

$$\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \bar{D}^0(t) \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} D^0(t) \\ \bar{D}^0(t) \end{pmatrix}$$

 $|D^{0}\rangle \xrightarrow{\underline{u}} \overline{(?)} \xrightarrow{\underline{c}} |\bar{D}^{0}\rangle$

Mixing Formalism

16

Time Evolution in $D^0 \to K\pi$ Decays

Event classes - flavour tagging at production and decay time

No Mixing
$$D^{0} \rightarrow \pi^{+} K^{-}$$
 Right Sign Decay (RS)
 $D^{*+} \rightarrow (\pi_{s}^{+}) D^{0} \xrightarrow{\checkmark} D^{0} \rightarrow \pi^{-} K^{+}$ Wrong Sign Decay (WS)
Mixing $\overline{D^{0}} \rightarrow \pi^{-} K^{+}$ Wrong Sign Decay (WS)
 D^{0} Mixing $CF 0.006\%$
mixed

Time evolution of the WS decay rate

assume CP conservation and
$$|x| \ll 1$$
; $|y| \ll 1$
 $T_{WS}(t) \propto e^{-\Gamma t} \left(\underbrace{R_D}_{K_D} + \underbrace{\sqrt{R_D} y' \Gamma t}_{4} + \underbrace{\frac{x'^2 + y'^2}{4} (\Gamma t)^2}_{4} \right)$
DCS Interference Mixing
 $\delta_{K\pi}$ is the strong phase between CF and DCS
amplitudes ($D^0 \rightarrow K\pi$)
 $x' = -x \cos \delta w + y \sin \delta w$

$$\begin{aligned} x' &= x \cos \delta_{K\pi} + y \sin \delta_{K\pi} \\ y' &= -x \sin \delta_{K\pi} + y \cos \delta_{K\pi} \end{aligned} \qquad y'^2 + x'^2 = \end{aligned}$$

 $x^{2} + y^{2}$

Analysis Strategy

BABAR approach

- Determine signal and background PDF's by unbinned max. likelihood fit
- Unbinned maximum likelihood fit of the wrong sign D⁰ decay time distribution

 BABAR (384 fb⁻¹)

 PRL 98, 211802 (2007)

Use the fit results of RS decay time and the resolution function

no mixing fit

Jörg Marks

$$\underbrace{\frac{\Gamma_{WS}(t)}{e^{-\Gamma t}} = R_D + y'\sqrt{R_D}\Gamma t + \frac{x'^2 + y'^2}{4}(\Gamma t)^2}_{4}$$

mixing fit

CDF approach

Measure the Number of WS and RS

 ${\sf D}^0$ decays in bins of the decay time $N_{RS}^{tot} = (3.044 \pm 0.0023) \cdot 10^6$ $N_{WS}^{tot} = (12.7 \pm 0.3) \cdot 10^3$

Fit the $N_{WS}^{tot}/N_{RS}^{tot}$ vs the D⁰decay time PRL100, 121802 (2008)

Experimental Results - $D^0 \rightarrow K\pi$

- LHCb prospects
 - Expected events in $\int \mathcal{L} \approx 100 \ pb^{-1}$: $N_{RS} \approx 17 \cdot 10^6$ $N_{WS} \approx 60 \cdot 10^3$

factor 10 more than BABAR

Measurement of y_{CP} - Introduction

 \succ Decay time of D⁰'s is exponential with modifications due to mixing

 $\tau^{\pm} = \frac{\tau^{0}}{1 + |q/p|(y\cos\phi_{f} \mp x\sin\phi_{f})} \qquad \tau^{\pm}: \text{ lifetime of } \mathsf{D}^{0} \ (\overline{\mathsf{D}}^{0}) \to \ \mathsf{CP+ eigenstates} \\ \tau^{0}: \text{ lifetime of } \mathsf{D}^{0} \to \mathsf{CP mixed} \ (\mathsf{CF})$

A lifetime difference between CP+ and CP mixed states gives access to mixing $y_{CP} = \frac{\tau^{0}}{\tau} - 1 \quad \text{or}$ $y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1 = \frac{\tau(K^{-}\pi^{+})}{\tau(\pi^{-}\pi^{+})} - 1 = |q/p|(y\cos\phi_{f} - x\sin\phi_{f})$ $y_{CP} \neq 0 \quad \Rightarrow \mathsf{D}^{0} - \overline{\mathsf{D}}^{0} \text{ mixing}$

➤ Test of CP violation $\Delta Y = \frac{\tau^0 A_\tau}{\tau} \quad \text{with} \quad A_\tau = \frac{\tau^+ - \tau^-}{\tau^+ + \tau^-} = -A_\Gamma$ $\Delta Y \neq 0 \quad \Rightarrow \quad \text{CP violation in D}^0 - \overline{D}^0 \text{ mixing}$ CP violation in interf. between mixing and decay $y_{CP} = y \quad \Leftarrow \quad \text{CP conservation}$ Jörg Marks
Physics at LHC 2010: Charm Physics Results from LHCb

20

Experimental Results – y_{CP}

>Combined y_{CP} and A_{Γ} as averaged by the charm subgroup of HFAG

LHCb – Towards y_{CP} and A_{Γ}

\blacktriangleright Compare $D^0 \to KK$, $D^0 \to \pi\pi$ and $D^0 \to K\pi$ to extract y_{CP} and A_Γ

- Analyse the D^0 decay time distributions
 - Determine $\langle N_{KK} \rangle_i / \langle N_{K\pi} \rangle_i$ in bins i of the lifetime distribution
 - Determine $\tau_{K\pi}$, τ_{KK}^+ , τ_{KK}^- from unbinned max. likelihood fits to the lifetime distributions
- Expected events in $\int \mathcal{L} \approx 100 \ pb^{-1}$:

 $N_{100 \ pb^{-1}}(D^0 \to K\pi) \approx 17 \cdot 10^6$

 $N_{100 \ pb^{-1}}(D^0 \to KK) \approx 1.3 \cdot 10^6$

factor 10 more data than the *BABAR* analysis B. Aubert et al., Phys. Rev. D80 071103 (2009)

Direct CP Violation in SCS Decays

Single Cabbibo suppressed charm decays (SCS)

- CPV in SM is CKM and loop suppressed (CPV < O (10⁻³))
- SCS decays are sensitive to CPV in $c \rightarrow uq\bar{q}$ transitions Contributions due to supersymmetric $\Delta C = 1$ QCD penguins could enter.

→ measurement of large CPV would be a sign of NP

- Search for CPV in SCS tagged $D^0 \to \pi^+ \pi^- \pi^0$, $D^0 \to K^+ K^- \pi^0$ by BABAR B. Aubert et al. \rightarrow results are in accord with SM predictions (few %) Phys. Rev. D78 051102 (2008)
- Model independent Dalitz Plot analysis to look for CP asymmetries Miranda procedure arXiv 0905.4233 (a) Consider the significance in the difference between $m^{2}(\pi^{+}\pi^{0})$ (GeV²/ corresponding Dalitz plot bins. $^{D_p}S_{CP} = -$
 - Provides better filtering between real asymmetries and statistical fluctuations
 - Not sensitive to production asymmetries

Jörg Marks

 $m^{2}(\pi^{-}\pi^{0}) (GeV^{2}/c^{4})$

Y. Grossman et al.

Phys. Rev. D75 036008 (2007)

d.s.t

Ω

LHCb - Direct CP Violation Search

> Dalitz analysis of the SCS decay $D^+ \rightarrow K^+ K^- \pi^+$

Time integrated and model independent search for local CP asymmetries in bins of the Dalitz plane.

• Two suitable control channels: $D_s^+ \to K^+ K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$

• Expect in $\int \mathcal{L} \approx 100 \ pb^{-1}$ (end of 2010) a sample of several million events

Averaged Mixing Parameters

Mixing parameter as combined by the HFAG charm group

Exclude no mixing case at 10.2 σ

$$\begin{aligned} |q/p| &= (0.91^{+0.19}_{-0.16})\% \\ \phi &= (-10.0^{+9.3}_{-8.7})^o \end{aligned}$$

Fully compatible with the CP conservation

Summary

- LHCb has a large potential for charm physics and profits here from the LHC 2010 run conditions
- LHCb will soon be able to contribute to the charm sector of flavour physics, especially in

Ongoing analyses which were not covered in this presentation

- * t-dependent Dalitz analysis in $D^0 o K_s \pi^+ \pi^-$, $K_s K^+ K^-$
- $\clubsuit \ {\rm T}$ violation in $D^0 \to K^+ K^- \pi^+ \pi^-$

back up slides

Charm Mixing Processes

♦ Lowest order short distance calculation: $x_{box} \cong O(10^{-5})$ $y_{box} \cong O(10^{-7})$ * x and y enhancement due to higher orders in OPE: $x \sim y \cong O(10^{-3})$

Long distance contributions dominate Numerical predictions lack in precision $x \cong O(10^{-2})$ $y \cong O(10^{-2})$

New Physics

✤ E.Golowich et al.: arXiv:0705.3650 Which new physics model can yield sizeable values for x and y

 $x \sim \frac{m_s^2 - m_d^2}{m_s^2}$

- CKM matrix (b)

CP violation in charm is small in SM Measurement of CPV: New Physics

 $\overline{d}, \overline{s}, \overline{b}$

 \overline{W}

LHCb - D^0 Lifetime Resolution in MC

Toy Simulation – WS $D^0 \rightarrow K\pi$

Use toy Monte Carlo simulations to understand mixing parameter extraction and statistical significance of the results. Use selection information and decay time acceptance.

 \succ ML fit of mixing parameters in the lifetime distribution of the WS data

Mixing Parameter Determination

► Measure the number of WS and RS $D^0 \to K\pi$ decays in bins of of the decay time t and determine $R(t) = N_{WS}/N_{RS}(t)$ as CDF arXiv: 0712.1567 (2007)

Simulate decay time distributions of of WS and RS decays

 $\sigma_t = \cdots \mathbf{f} \cdot ps \quad \tau_{D^+} = \cdots \mathbf{f} \cdot ps$ $x = \cdots \mathbf{i} \quad y = \cdots \mathbf{i} \quad R_D = \cdots \mathbf{r}$

- > Obtain N_{RS} and N_{WS} for a given binning in the decay time
- > Fit $R = N_{WS}/N_{RS}$ as function of the average decay time in each bin

$$\rightarrow \sqrt{R_D}, y', x'^2$$

Sensitivity – D^0 Mixing Parameters

Summary from selection

Bckgr/Signal = 2.56 $N_{Signal}^{WS} = 46500 \pm 2200/fb^{-1}$ $\epsilon_{Signal}^{RS/WS} = (1.39 \pm 0.17) \cdot 10^{-3}$

Statistical errors

	$\sigma(x'^2) \cdot 10^{-3}$	$\sigma(y') \cdot 10^{-3}$
$LHCb[2fb^{-1}]$	± 0.064	± 0.87
BABAR	± 0.37	± 5.4
Belle	$\substack{+0.21\\-0.23}$	$+4.0 \\ -3.9$

LHCb-2007-049

> Extract y_{CP} and (x'^2, y') from toy MC > Sensitivity - combining likelihoods

Introduction - t Dep. Dalitz Analysis

- \blacktriangleright Dalitz plot of $D^0 \to K^0_s \pi^+ \pi^-$
 - Different quasi 2 body amplitudes contribute and interfere
 - Dalitz analysis allows to determine amplitude and relative phases of 18 mod
- Time dependence

$$\langle K_s^0 \pi^+ \pi^- | D^0(t) \rangle =$$

decay amplitude

f 18 modes

$$D^{0}: m_{+}^{2}(K_{s}^{0}\pi^{+})$$

$$\bar{D}^{0}: m_{+}^{2}(K_{s}^{0}\pi^{-})$$

$$= \frac{1}{2} A(m_{-}^{2}, m_{+}^{2}) [e^{-i (\lambda)t} + e^{-i (\lambda)t}]$$

$$\chi_{1,2} = f(x, y)$$

$$+ \frac{1}{2} \frac{q}{p} \bar{A}(m_{-}^{2}, m_{+}^{2}) [e^{-i (\lambda)t} + e^{-i (\lambda)t}]$$
contain functions of x and y

CF: $D^0 \rightarrow K^{*-}\pi^+$

CP: $D^0 \rightarrow K^0_{\circ} \rho^0$

The decay rates contain functions of x and y

> Perform unbinned max. likelihood fit in the signal region to $(m_{+}^{2}, m_{-}^{2}, t)$

- \Rightarrow extract relative amplitudes and relative phases
- \Rightarrow x, y and τ_{D^0}

Belle – t Dep. Dalitz Analysis Results

$$|q/p| = 0.86^{+0.30+0.06}_{-0.29-0.03} \pm 0.08$$

arg (q/p)[°] = -14^{+16+5+2}_{-18-3-4}

no CP violation

