Review of Charm Physics A Theory Perspective

Thomas Mannel

Siegen University

June 11th, Physics @ the LHC , DESY, Hamburg

イロト イポト イヨト イヨト

• I will not talk about the "new states" X,Y,Z

- ... although this is currently a "hot topic",
- ... but it concerns mainly our (non)-understanding of low-energy QCD,
- ... thus it has its own relevance with respect to QCD
- Emphasis is laid on Charm-Flavour Aspects,
- ... including a possible shot at "new physics" from precision flavour physics

・ロト ・四ト ・ヨト ・ヨト

Introduction

Bread and Butter of Charm

4 CP in Charm, New Physics

Rare Decays 5

イロト イポト イヨト イヨト

ъ

Introduction: Looking up ...

- Flavour Physics of charm: Compared to *B* and *K*: The roles of up and down quarks are interchanged
- Complementarity to top quark (flavour) physics
- Up-type Flavour tests are mandatory for a full test of our understanding of Flavour Physics

▲ (□) ト → (三)

Charm is unique ...

- FCNC's are suppressed in the SM by GIM
- For bottom and strange:

$${
m GIM} \propto {1\over 16\pi^2} {m_t^2-m_u^2\over M_W^2}$$

GIM is weakened by the large Top mass

• For charm (and top):

$${
m GIM} \propto rac{1}{16\pi^2} rac{m_b^2 - m_d^2}{M_W^2}$$

イロト イポト イヨト イヨト

GIM is MUCH more efficient

- Up-type FCNC's have a very small SM "pollution"
- Relative Strength of New Physics (NP) in Up vs. Down-Type FCNC's might be different
- Cleaner (but not neccessary larger) signals of new physics:

$$\left(\frac{\mathsf{NP}\ \mathsf{Signal}}{\mathsf{SM}\ \mathsf{noise}}\right)_{\mathsf{up}\mathsf{-type}} > \left(\frac{\mathsf{NP}\ \mathsf{Signal}}{\mathsf{SM}\ \mathsf{noise}}\right)_{\mathsf{down}\mathsf{-type}}$$

- Top plays a special role
 - No Top Hadrons
 - Flavour Phenomenology less rich
 - Strong interactions perturbative

Charm: Novel access to flavour dynamics

Bread and Butter Processes

- (Semi-)leptonics: $c \to s \ell \bar{\nu}_{\ell}$ and $c \to d \ell \bar{\nu}_{\ell}$
- Non-leptonics: $c
 ightarrow s ar{q} q'$ and $c
 ightarrow d ar{q} q'$
- Access to CKM matrix elements
- Non-leptonic multiparticle decays: CP violation

Charm Semi-Leptonics

• Dedicated Charm Experiment: CLEO-c:

イロト イポト イヨト イヨト

From factor calculations: lattice and QCD SR

• Direct determinations of V_{cs} and V_{cd}

$$\textit{V_{cd}} = 0.225 \pm 0.005 \pm 0.003^{+0.016}_{-0.012}$$

< 🗇 ▶

→ Ξ → → Ξ

(Khodjamirian et al.)

Charm Non-Leptonics: Two Body Decays

イロト イポト イヨト イヨト

э

Meson	Decay	$\mathcal{B}[10]$	Rep.
	mode	(%)	
D^0	$K^{-}\pi^{+}$	3.891 ± 0.077	T + E
	$\overline{K}^0 \pi^0$	$2.380{\pm}0.092$	$(C-E)/\sqrt{2}$
	$\overline{K}^0 \eta$	$0.962 {\pm} 0.060$	$\frac{C}{\sqrt{2}}\sin(\theta_{\eta}+\phi_1)-\frac{\sqrt{3}E}{\sqrt{2}}\cos(\theta_{\eta}+2\phi_1)$
	$\overline{K}^0 \eta'$	$1.900{\pm}0.108$	$-\frac{C}{\sqrt{2}}\cos(\theta_{\eta}+\phi_{1})-\frac{\sqrt{3}E}{\sqrt{2}}\sin(\theta_{\eta}+2\phi_{1})$
D^+	$\overline{K}^0 \pi^+$	$3.074{\pm}0.097$	C+T
D_s^+	$\overline{K}^0 K^+$	$2.98 {\pm} 0.17$	C + A
	$\pi^+\eta$	$1.84{\pm}0.15$	$T\cos(\theta_{\eta} + \phi_1) - \sqrt{2}A\sin(\theta_{\eta} + \phi_1)$
	$\pi^+\eta'$	$3.95 {\pm} 0.34$	$T\sin(\theta_{\eta} + \phi_1) + \sqrt{2}A\cos(\theta_{\eta} + \phi_1)$

$$T = 3.003 \pm 0.023$$

$$C = (2.565 \pm 0.030) \exp [i(-152.11 \pm 0.57)^{\circ}]$$

$$E = (1.372 \pm 0.036) \exp [i(123.62 \pm 1.25)^{\circ}]$$

$$A = (0.452 \pm 0.058) \exp [i(19^{+15}_{-14})^{\circ}]$$

Thomas Mannel, Uni. Siegen

Review of Charm Physics

Charm Nonleptonics: Dalitz Analyses

Relevant for CP violation studies

Charm Mixing

 Transitions between D⁰ and D⁰: Two Mass Eigenstates in the neutral D System

$$|D_{1,2}
angle=
ho|D^0
angle\pm q|\overline{D}^0
angle \qquad |
ho|^2+|q|^2=1$$

• Mixing Parameters

$$x = rac{m_1 - m_2}{\Gamma}$$
 $y = rac{\Gamma_1 - \Gamma_2}{2\Gamma}$ with $\Gamma = rac{1}{2}(\Gamma_1 + \Gamma_2)$

- Opens a window to new physics
- Opens the road to time-dependent CP violation

• Standard Model: At the quark level:

Pollution by long distance effects

Standard Model mixing predictions

- Exclusive calculations $D \to [K\pi/\pi\pi/\pi\rho/...] \to \overline{D}$ (Falk, Grossman, Ligeti, Nir, Petrov)
- Inclusive calculation:

OPE in terms of inverse Powers of the charm mass

(画) (目) (日)

э

(Uraltsev, Georgi, Simmons. Ricciati, Ohl)

Thomas Mannel, Uni. Siegen Review of Charm Physics

Parameter	No CPV	No direct CPV	CPV-allowed	$CPV\mbox{-allowed}$ 95% C.L.
x (%)	$0.61^{+0.19}_{-0.20}$	$0.59\ \pm 0.20$	0.59 ± 0.20	[0.19, 0.97]
y (%)	0.79 ± 0.13	$0.81\ \pm 0.13$	$0.80\ \pm 0.13$	[0.54, 1.05]
			۰ 🗆	 ・ < 回 > < 目 > < 目 > < 目 > < 回 < つ

Thomas Mannel, Uni. Siegen

Review of Charm Physics

 Mixing seems established, but no single 5σ measurement!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Interpretation of Charm Mixing

- Difficult, due to long distance contributions
- A scenario |x| > 1% and |x| ≫ |y| could be interpreted as a manifestation of NP
- ... but seems to be ruled our already
- Observations can be due to SM dynamics
- ... yet may still contain a large NP contribution
- A precise SM prediction requires a theoretical breakthrough
- Knowing *x* and *y* is also of practical importance with respect to CP violation

ヘロト 人間 ト ヘヨト ヘヨト

CP in Charm

In the SM:

- Couplings to the third family are small
- → SM Charm Physics is "two family physics"
- ullet ightarrow only small pollution from the third family
- $\bullet \rightarrow CP$ violating effects are tiny
- Weak phase in CS decays: $V_{cs} = 1... + i\lambda^4$

No weak phases in CA and DCS modes

Thomas Mannel, Uni. Siegen Review of Charm Physics

• $D^0 - \overline{D}^0$ Oscillations open an additional window to CP

$$\mathcal{A}_{\mathrm{CP}}(t) = [x \sin \phi_{\mathrm{CP}} + y \epsilon_{\mathrm{CP}} \cos \phi_{\mathrm{CP}}] \left(rac{t}{ au}
ight)$$

•
$$\phi_{\rm CP}$$
: Weak Phase in $D^0 - \overline{D}^0$ mixing

- ϵ_{CP} : Corresponds to the ϵ parameter for the Kaons
- In the SM: $x, y \sim 1\%$ and $\sin \phi_{\rm CP}, \epsilon_{\rm CP} \leq 10^{-3}$

 $\mathcal{A}_{ ext{CP}}(t) \sim 10^{-5}$ in the SM

- This is an experimental challenge
- Good news for LHCb:

 $D^0(t) \rightarrow K_s \phi, K^+ K^-, \pi^+ \pi^-, K^+ \pi^-$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

CP in Charm as Indication of New Physics

- Baryon Asymmetry: CP violation beyond CKM
- CP Asymmetries are linear in the NP amplitude
- Tiny SM Effects \rightarrow Very small SM background:

 $\mathcal{A}_{\mathrm{CP}}(t) \sim 10^{-5}$ in some NP models

• Large CP sensitivity in final state distributions

・ 同 ト ・ ヨ ト ・ ヨ ト

CP Studies in Final State Distribution

Ultimate tool for CP Studies:

- Local Asymmetries will be larger than integrated ones
- Can rely on relative instead of absolute normalization
- Can give us more information on the nature of the NP (Bigi, Hanhart, Meissner, Gardener, TM, ...)

Current Status of Charm CP

<u> </u>		
Belle(2005)		$D^0 \rightarrow K^+ \pi^- \pi^0$
Belle(2005)	•	$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$
Belle(2007)	H	$D^0 \rightarrow \pi^+ \pi^-$
Belle(2007)	H - H	$D^0 \rightarrow K^+ K^-$
BaBar(2008)		$D^0 \to \pi^+\pi^-$
BaBar(2008)	H- B- H	$D^0 \rightarrow K^+ K^-$
BaBar(2008)		$D^0 \rightarrow \pi^+\pi^-$
BaBar(2008)		$D^0 \rightarrow K^+ K^-$
Belle(2008)		$D^0 \rightarrow \pi^+ \pi^-$
Belle(2008)		$D^0 \rightarrow K^+ K^-$
Belle(2008)	· · · · · · · · · · · · · · · · · · ·	$D^0 \to \pi^+ \pi^- \pi^0$
BaBar(2008)		$D^0 \rightarrow \pi^+\pi^-\pi^0$
BaBar(2008)		$D^0 \rightarrow K^+ K^- \pi^0$
BaBar(2010)	· · · · · ·	$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$
ليتبابينانينا		
-10 -8 -6 -4 -2	2 0 2	4 6 8 10
		A _{CP} (× 10 ⁻²)

Thomas Mannel, Uni. Siegen Review of

Review of Charm Physics

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Rare Decays

 $\textbf{\textit{c}} \rightarrow \textbf{\textit{u}} + \gamma$ transitions

•
$$D_{(s)} \rightarrow \gamma + K^*/\rho/\omega/\phi$$

- ... SM short distance contributon: BR \sim few $\times 10^{-8}$
- ... dominated by long distance contributions: $BR(D^0 \rightarrow K^*\gamma) \sim 10^{-5} - 10^{-4}$ $BR(D^0 \rightarrow \rho\gamma) \sim 10^{-6} - 10^{-5}$
- NP appears as local "Penguin" operators
- Can a convincing NP case be constructed in these decays?

ヘロト ヘアト ヘビト ヘビト

1

 $c \rightarrow u + \ell^+ \ell^-$ transitions

•
$$D_{(s)} \rightarrow \ell^+ \ell^- + K^* / \rho / \omega / \phi$$

- ... also dominated by long distance contributions: ${
 m BR}(D^0 \to \pi/\rho + \ell^+ \ell^-) \sim 10^{-6}$
- Analysis of the lepton spectra can help
- Likewise: Can a convincing NP case be constructed in these decays?
- $D^0 \rightarrow \mu^+ \mu^-$: A channel for LHCb! In the SM: BR($D^0 \rightarrow \mu^+ \mu^-$) ~ 10⁻¹²
- $D^0 \rightarrow \gamma \gamma$: Not a channel for LHCb! LD Contributions, interplay with $D^0 \rightarrow \mu^+ \mu^-$
- "Forbidden" Modes: $D^0
 ightarrow e^+ \mu^-$ etc...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conclusions

- Charm offers a unique possibility to test Flavour in the up sector
- Complementarity with Top Quark Physics
- Evidence for $D \overline{D}$ Oscillations opens new roads
- SM background in charm is much smaller than in bottom or stange
- CP violation studies in final state distributions offer high sensitivity

Charm Studies are mandatory to complete our test of flavour

イロト イポト イヨト イヨト