

Cornell University Floyd R. Newman Laboratory for Elementary-Particle Physics

Top Physics at the Tevatron

Physics at the LHC, 2010 Hamburg, 6/10/2010 Julia Thom, Cornell University

Julia Thom, CU

Top Quark Physics

Most massive elementary particle

-Discovered in 1995, only few dozen candidates in 0.1 fb⁻¹

- Any effects from new physics? •
 - Studies with 2-5 fb^{-1} for this talk
- op quark mass is a fundamental arameter in the Standard Model nd beyond Induces significant radiative corrections to Webson mass Top quark mass is a fundamental • parameter in the Standard Model and beyond
 - W boson mass
 - Reduced uncertainty on top quark mass imposes tighter constraints on unknowns, like Standard Model Higgs boson or SUSY
- Significant background to many • searches for new physics at LHC

Outline

- The top signature and how to separate signal from background
- Top Quark Production
 - Top pairs, mass
 - Searches for anomalous production
 - Single top
- Tests of Top Quark Decay
 - W boson helicity in top decays
 - Probe the W-t-b vertex

Julia Thom, CU

Identifying top events

Events classified by decays of the two W bosons:

- "lepton+jets": 4 jets (2 from b) and missing $E_{\rm T}$ from ν
 - BF=24/81, but significant background from W+jet production
- "dilepton": 2 jets and missing E_T from ν
 - Clean, but low stat. BF=4/81
- "hadronic": 6 or more jets
 - BF=36/81, but large QCD multijet background
 - Jet energy scale uncertainty, combinatorics

"I+jets" events, background suppression

 Key is identification of at least 1
 b-jet. Background reduced to Wbb (few % of W+jets background)

- 2 techniques:
 - Secondary vertex tag: find decay vertex of long-lived hadron in jet.
 - Soft lepton tag: lepton in jet from semileptonic decay of B

• Typically at least one b-tag required for a top I+jet candidate

I+jets+btag analysis, limiting factors

- Dominant background is W+bb,cc ("W+HF"), and predicting it leads to one of the dominant systematics
- Important to understand W+HF normalization in exclusive jet bins (single top, Higgs discovery,..)

Julia Thom, CU

W+HF backgrounds

• Normalize ALPGEN W+jets (pretag) to data:

 $N_{W+jets}^{pretag} = N_{data}^{pretag} - N_{QCD}^{pretag} - N_{EWK}^{pretag} - N_{top}^{pretag}$

- determine heavy flavor fraction in ALPGEN W+jets
- Measure correction factor K to heavy flavor fraction W+HF = normalized W+jets × K × heavy flavor fraction
- at CDF, K extracted in W+1 jet control region:

$$K_{CDF} = 1.4 \pm 0.4$$

 $K_{D0} = 1.5 \pm 0.45$

Kin.observables: top decay products are more central and more energetic than background

8

Top quark production

- Top pairs, mass
- Searches for anomalous production
- Single top
- Top quark decay
 - W boson helicity in top decays
 - Probe the W-t-b vertex

pair production cross section

Cross section results 2 dilepton channel: DØ Preliminary, 5.3 fb⁻¹ ad) Number of events DØ preliminary 4.3 fb⁻¹ Z bckg: 42.1 Dibosons: 11.9 o_{tt} 300 Fake bckg: 14.0 t ī: 265.0 Data: 331 10 200 100 $\sigma(p\overline{p} \rightarrow t\overline{t} + X \rightarrow II + X)$ 6 Exp. mass dependence NLO+NLL Cacciari et al. NNLO approx Moch and Uwer Δ NNLO approx Kidonakis et al. 2 3 4 2 Number of jets 150 190 160 170 180 Top Mass (GeV)

 σ_{tt} = 8.4 ± 0.5(stat) ± 0.9(syst)±0.6(Lumi) pb

Julia Thom, CU

Cross section results 2

Julia Thom, CU

Top Mass

- Challenge: associate measured objects to initial state quarks and leptons (incl.neutrino), extract best possible 4-vector for each
 - E.g. Matrix element method: determine probability density for each combination

- Major systematic: Jet Energy Scale
 - Run II: constrain JES uncertainty using reconstructed hadronic W ("insitu calibration"), fit for both JES and top mass

Tevatron Combination

March 2009 Tevatron combination: $m_{top} = 173.1 \pm 0.6(stat) \pm 1.1(syst)GeV/c^2$

Precision now systematics limited, (but JES scaling with statistics)

	D0 + CDF
Jet Energy Scale	0.73
Lepton P _T scale	0.11
Signal modeling (ISR/FSR, PDFs)	0.30
MC modeling (Pythia vs. Herwig)	0.49
Multiple interactions (D0)	0.03
Background modeling	0.26
Fitting procedure	0.16
Color reconnection	0.41
Multiple hadron interactions	0.07
Total Systematic Uncertainty	1.07
Statistical Uncertainty	0.65

Tevatron Combination (March 2009)

Julia Thom, CU

New CDF measurement: 4.6 fb⁻¹

- Most precise single measurement, I+jets channel
- As before, likelihood per event is calculated by integration over the matrix element. Assume all events are signal
- Neural Network distinguishes background, accounted for as a correction in the Likelihood $\log L_{sig}(m_t, JES) =$

Searches for Anomalous Production of tt

Expect no resonance production in SM, but NP models predict to bound states. Reconstruct invariant mass of the tt system:

Searches for massive X→tt̄

..but disappears with more data.

Julia Thom, CU

Massive X→tt̄ search

• L+jets channel, at least 1 b tag

Massive X→tt̄ search

- Extract Poisson probability for signal consistency using simulation of resonance processes
- Largest excess less than 2 sigma at X mass ~650 GeV
- Place limit on leptophobic Z': M_{Z'}>820 GeV/c²

Search for Anomalous Production: Forward Backward Asymmetry

- Z' can change top "charge asymmetry": compare number of top and anti-top produced with momentum in a given direction
- interpret as forward backward asymmetry (top moving for or against given direction), in pp lab frame

$$A_{fb} = \frac{N_t(p) - N_t(\overline{p})}{N_t(p) + N_t(\overline{p})}$$

• Choosing Θ between top momentum and proton beam direction: $N(\cos(\theta) > 0) = N(\cos(\theta) < 0)$

$$A_{fb} = \frac{N_t(\cos(\theta) > 0) - N_t(\cos(\theta) < 0)}{N_t(\cos(\theta) > 0) + N_t(\cos(\theta) < 0)}$$

 In I+jets+btag channel: tag t vs t with lepton charge, use hadronic side to measure top rapidity

Results, A_{FB}

- χ^2 based kinematic fitter, correct for experimental effects
- small pp lab frame charge asymmetry expected in QCD at NLO, A_{fb} = 0.05±0.015 (interference ISR and FSR diagrams)
- Using 3.2 fb⁻¹:

 A_{fb} = 0.193 ± 0.065 (stat) ± 0.024 (syst) (pp lab frame)

Results, A_{FB}

• Check modeling of background in sample with no btags

Single Top

- Observation in 2009 (2.3-3.2 fb⁻¹)
- Charged EWK production only, direct probe of top weak coupling

- Measure $V_{tb} \quad \sigma(q\overline{q}', qg \rightarrow tb) \propto |V_{tb}|^2$

- Important background to Higgs searches
- NP (e.g. FCNC) can alter rates

Single Top production

- Same selection as top pairs, but signal is in W+2j
- Difficult due to large W+2j background. S/B=1/20
- Expected signal yield is smaller than background uncertainties! Not a counting experiment..

Single Top analysis strategy

D0 only

CDF only

Thanks to Wolfgang Wagner

Kinematic modeling of input variables

Single top results CDF 8 different I+jet+ET analyses combined....

.. into single "Super Discriminant"

CDF results

8 I+jet+Et and 3 MET+jets analyses:

 $|V_{tb}| = 0.91 \pm 0.11(exp.)$ ±0.07 (theory) $\sigma = 2.3+0.6-0.5 \text{ pb}$

2D fit for σ_s and σ_t Fitting σ_s and σ_t separately: σ_t =0.8 ± 0.4 pb And σ_s =1.8+0.7-0.5 pb

D0 results

- s, t channel fit together, assuming SM ratio
- 2,3,4 jets, 1,2 b-tagged 1 lepton, missing E_t
- 4519 events, 223±30 expected from ST
- Multivariate discriminant

D0 t-channel result

|V_{tb}| > 0.78 @ 95% CL σ = 3.49±0.88 pb

combination

Single Top	Signal Significance		CKM Matrix Element V.	
Cross Section	Expected	Observed		
DØ (2.3 fb ⁻¹) March 2009 PRL 103, 092001 (2009) (m _{top} = 170 GeV)				
3.94 ± 0.88 pb	4.5 σ	5.0 σ	$\left V_{tb} f_1^L \right = 1.07 \pm 0.12$ $\left V_{tb} \right > 0.78$ at 95% CL	
CDF (3.2, 2.1 fb ⁻¹) March 2009 PRL 103, 092002 (2009) (m _{top} = 175 GeV)				
2.3 ^{+0.6} pb	>5.9 σ	5.0 σ	$\left V_{tb} f_1^L \right = 0.91 \pm 0.13$ $\left V_{tb} \right > 0.71$ at 95% CL	
DØ & CDF combined August 2009 FERMILAB-TM-2440-E (m _{top} = 170 GeV)				
2.76 ^{+0.58} pb			$\left V_{tb} f_1^L \right = 0.88 \pm 0.07$ $\left V_{tb} \right > 0.77$ at 95% CL	

Julia Thom, CU

- Top quark production and properties
 - Top pairs, mass
 - Anomalous production
 - Single top
- Top quark decay
 - W boson helicity in top decays
 - Probe the W-t-b vertex

W helicity fractions in t->Wb decay

- fraction of longitudinally (f0) and right-handed (f+) polarized W bosons from top-quark decay
- SM at tWb vertex predicts 70% longitudinal W
- Measure via angular distribution:

W helicity results, 2D model independent fit (f0,f+)

CDF: matrix element analysis in lepton+jets channel.

f0 = 0.88 ± 0.11 (stat) ± 0.06 (syst) f+ = -0.15 ± 0.07 (stat) ± 0.06 (syst)

D0: template analysis in dilepton and I+jets channels.

f0 = 0.490 ± 0.106 (stat) ± 0.085 (syst) f+ = 0.110 ± 0.059 (stat) ± 0.052 (syst)

Julia Thom, CU

Anomalous couplings

SM lagrangian with form factors $f_1^{L}=1$, $f_1^{R}=f_2^{L}=f_2^{R}=0$

$$L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \overline{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2}M} \partial_{\nu} W_{\mu}^{-} \overline{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t$$

C.R. Chen, F. Larios and C.P Yuan, Phys.Lett.B631:126

D0 combines measurements of W helicity, single top kinematics into analysis of tWb vertex, investigating pairs of form factors

Top Spin

- Top anti-top spins are correlated only if top lifetime is short enough. Can observe correlation in top decay products
- Measure angle of decay products (leptons, jets) in top rest frame with respect to a chosen quantization axis, e.g. top helicity axis

Top Spin results

D0: dilepton sample, measure angles with respect to beam axis. SM expectation NLO C= 0.78

C = -0.17 + 0.64 - 0.53 (stat+syst)

CDF: I+jet sample, template analysis, 2D fit to angular distribution of \mathbf{m} quark to lepton. Using helicity basis. SM: C = 0.4 (NLO)

 $C= 0.60 \pm 0.50 \text{ (stat)} \pm 0.16 \text{ (syst)}$

Top Charge

- Test hypothesis: top quark is an exotic particle with q_t=-4/3 ("XM")?D.Chang et al., PRD 59 (1999) 091503
- L+jets events with 2 tags
- Kinematic fitter associates
 b jets to had/lept. W decay

in 2.7 fb⁻¹: 29 events consistent with SM and 16 events consistent with a q=-4/3 top quark. Result: 95% exclusion of the -4/3 charge hypothesis

Top width

- SM prediction ~1.5 GeV at m_t=175 GeV/c²
- I+jet channel ≥1 btag, ≥4 jets
- Minimize χ^2 function for m_t

CDF Run II Preliminary 4.3 fb⁻¹

 2D template fit (m_t, m_{jj}) to data to extract top width

95% Confidence Level:68% Confidence Level:

 Δ_{JES}

0.5

-0.5

Summary

- Broad program of measurements of top quark properties ongoing at the Tevatron
- RunII dataset is beginning to provide sensitive searches for NP in top production and decay
 - SM agreement (so far)
 - results using up to 4.7fb⁻¹ of data
 - Have ~7fb⁻¹ on tape, expect >10fb⁻¹ until end of RunII
- Uncertainty on the top mass (individual measurements) is <1%!
- Work provides guidance and focus for LHC top program and beyond

Backup Slides

Search for heavy top decay to Wq final states (e.g.LHT)

- I+jets (no b-tag requirement)
- Template method for top reconstruction
- Use observed H_T and mass distribution to fit signal t' and background (top, W,..) distributions
- exclude a standard model fourth-generation t' quark with mass below 335 GeV at 95% CL.

New CDF measurement: 4.6fb-1

- As before, signal likelihood calculated by integration over the matrix element (x: parton level, y: measured quantities)
- Gives probability that we observe an event with kinematic variables y as a fct of true top mass and JES shift parameter "JES"

Top mass in all hadronic channel

• Event selection in 6-8 jets (no MET) via NN:

Result m_t = 174.8 ± 1.7(stat.) ± 1.9(syst.) GeV/c²

QCD background estimation

500

20

40

60

80 10 MET [GeV]

100

- 3 techniques to evaluate QCD
- Met vs iso •
- Matrix technique •
- Anti-electron/jet technique •

$$\begin{split} N_{loose} &= N_{loose}^{fake-\ell} + N_{loose}^{real-\ell} \\ N_{tight} &= \varepsilon_{fake-\ell} N_{loose}^{fake-\ell} + \varepsilon_{real-\ell} N_{loose}^{real-\ell} \end{split}$$

classic top mass measurement

- Step 1: Associate measured objects with initial state using best match (χ^2) to 3 constraints:
 - $M_{jj} = M_{VV}$
 - $M_{Iv} = M_W$
 - $M_{Ivb} = M_{qqb}$
- Step 2: jet energy correction according to species
 - E scale for light jets tuned to match M_W
 - E scale for b jets adjusted via tuned MC

controlling the JES uncertainty

- Dominant contribution to δm_t from Jet Energy Scale uncertainty
- $\sigma_{\text{JES}}/\text{JES}$ between 3 and 6%
- RunII: constrain JES uncertainty using reconstructed hadronic W ("in-situ calibration")

- JES uncertainty scales with statistics

Matrix Element Method

Matrix Element Method: define probability P_{evt} that the observed kinematics arise from possible signal or background kinematics at parton level, then maximize $L = \prod P_{evt}(M_{top}, JES)$

Search for Anomalous Production: Forward Backward Asymmetry

- Z' can change top "charge asymmetry": compare number of top and antitop produced with momentum in a given direction
- interpret as forward backward asymmetry (top moving for or against given direction), in pp rest frame

against given direction), in pp
rest frame
$$A_{fb} = \frac{N_t(p) - N_t(\bar{p})}{N_t(p) + N_t(\bar{p})} \text{ t with} \qquad FORWARD \qquad FORWARD$$