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We describe the POWHEG-BOX package, a general computer code framework for implementing
NLO calculations in Shower Monte Carlo programs according to the POWHEG method. The
program can be downloaded from http://powhegbox.mib.infn.it/~nason/POWHEG.

1 The POWHEG method

Next-to-leading order (NLO) perturbative QCD computations as well as Shower Monte Carlo
(SMC) programs are fundamental tools for the present-days particle physics phenomenology. In
particular, SMC programs incorporate the description of a generic high-energy hadronic collision
process, starting from the collision between constituents and developing the parton shower, that
increases the number of final-state particles by means of strongly ordered subsequent emissions.
Eventually, the interface with a phenomenological hadronization model, enables the comparison
with experimental data. For these reasons, they are routinely used by experimentalists to
simulate signal and backgrounds processes in physics searches. Nevertheless, the demand for
better and better predictions from high energy experiments calls for improving the precision
of existing SMC’s, including NLO corrections. The MC@NLO [1] method has shown first how to
reach NLO accuracy for inclusive quantities, implementing the hard subprocess at NLO and
developing showers within the leading logarithmic approximation, avoiding double counting of
radiation. In this way one achieves benefits of both approaches: exclusive final states generation
of SMC’s and accuracy of NLO calculations.

The POWHEG method is a different prescription for interfacing NLO calculations with parton
shower generators. It was first suggested in Ref. [2], and was described in great detail in Ref. [3].
This method is independent from the Monte Carlo program used for subsequent showering and
generates positive weighted events only. In these respects it improves the MC@NLO approach.
Until now, the POWHEG method has been successfully applied to several processes, both at
lepton [4, 5] and hadron colliders [6, 7, 8, 9, 10, 11, 12, 13, 14]. In these implementations, it
has been interfaced to the HERWIG [15, 16], PYTHIA [17] and HERWIG++ [18] SMC programs.

In the POWHEG method the hardest radiation1 is generated first, independently from the
following ones. Schematically2, the hardest radiation is distributed according to

dσ = B̄ (ΦB) dΦB

[
∆R

(
pmin
T

)
+
R (ΦR)

B (ΦB)
∆R (kT (ΦR)) dΦrad

]
, (1)

1By hardest we mean the radiation with the highest transverse momentum, either with respect to the beam
for initial state radiation (ISR), either with respect to another parton for final state radiation (FSR).

2Here we avoid entering into the details concerning the radiation regions and the correct treatment of the
associated flavour configurations [2, 3].
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where B (ΦB) is the Born contribution and

B̄ (ΦB) = B (ΦB) +

[
V (ΦB) +

∫
dΦradR (ΦR)

]
(2)

is the NLO differential cross section at fixed underlying Born kinematics and integrated over
the radiation variables. The transverse momentum of the emitted parton, with respect to the
beam or to another particle, depending on the region of singularity, is denoted by kT (ΦR). The
lower cutoff pmin

T is necessary in order to avoid the coupling constant to reach unphysical values.
V (ΦB) and R (ΦR) are the virtual and the real corrections and in the expression within the
square bracket in Eq. (2) a procedure that takes care of the cancellation of soft and collinear
singularities is understood, e.g. Frixione-Kunszt-Signer (FKS) [19] or Catani-Seymour (CS) [20]
dipole subtraction. Then,

∆R (pT ) = exp

[
−
∫
dΦrad

R (ΦR)

B (ΦB)
θ (kT (ΦR)− pT )

]
(3)

is the POWHEG Sudakov, that is the probability of not having an emission harder that pT . Equa-
tion (1) can be seen as an improvement on the original SMC hardest-emission formula, since
the Born cross section is replaced with B̄ (ΦB) which is normalized to NLO by construction.
At small transverse momenta the POWHEG Sudakov becomes equal to a standard SMC one.
However, the NLO accuracy of Eq. (1) is maintained for inclusive quantities. Moreover, the
high−pT radiation region is correctly described by the real contributions

dσ ≈ B̄ (ΦB) dΦB
R (ΦR)

B (ΦB)
dΦrad ≈ R (ΦR) dΦBdΦrad , (4)

since ∆R ≈ 1 and B̄/B ≈ 1 + O (αs). After having generated the hardest radiation, one can
interface with any available shower generator, in order to develop the rest of the shower. To
avoid the double-counting, the SMC is required to be either pT−ordered or to have the ability
to veto emissions with a pT harder than the first one3.

2 The POWHEG-BOX

In a real collision process several colored massless partons are present, either in the initial or the
final state. One thus should repeat the procedure outlined in Sec. 1 for every possible singular
region, associated with any massless colored leg becoming collinear to another one, or soft. In
order to do this, the full real emission cross section is decomposed into a sum of terms, each
of which has at most one collinear and one soft singularities. The radiation is then generated
independently in each of this regions, but only the hardest radiation is retained and the event is
generated according to the flavour and kinematics associated to it. Because of this complexity,
an automatic tool, the POWHEG-BOX, has been built [22], in order to help the inclusion of new
processes. On the other hand, the POWHEG-BOX may also be seen as a library, where previously
implemented processes are available in a common framework. The processes implemented so
far and already available in the public version comprise: W,Z/γ single vector boson production,
Higgs boson through gluon and Vector Boson Fusion, single-top in s− and t−channel.

3All modern SMC generators compliant with the Les Houches Interface for User Processes [21] should
implement this last feature.
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The user wishing to include a new NLO calculation must only know how to communicate the
needed information to the POWHEG-BOX. This happens either defining the appropriate variables,
either providing the necessary Fortran routines. The required inputs 4 are:

1. The number of legs in Born process, e.g. nlegborn= 5 for pp→ (Z → e+e−) + j.

2. The list of Born and Real processes flavours, according to PDG [23] conventions5. Flavor is
defined incoming (outgoing) for incoming (outgoing) fermion lines, e.g. [5,2,23,6,3,0]

for bu → Ztsg.

3. The Born phase space routine that, given random numbers in the unit ndims-dimensional
hypercube, set the Born phase space Jacobian and returns the momenta in lab. and CM
frames and the Bjorken x’s.

4. The routines that performs the initialization of the couplings, and the setting of the
factorization and renormalization scales.

5. The Born squared amplitude routine that, for a given set of momenta and a flavour
configuration, returns B = |M|2, summed and averaged over color and helicities as well
as the color-ordered Born squared amplitudes Bjk and the helicity correlated Born squared
amplitudes Bk,µν , where k runs over all external gluons.

6. The real emission squared amplitude routine, that returns R for a given momenta and
flavour list.

7. The finite part of the interference of Born and virtual amplitude contributions Vb =

2Re{B × V}, after factorizing out the common factor N = (4π)ε

Γ(1−ε)

(
µ2

R

Q2

)ε
. The routine is

again defined with momenta and flavour list as input.

8. The Born color structures in the large Nc limit, set through the Les Houches interface [21].

We remark that items (1-7) are the usual ingredients needed to perform a NLO calculation
in any subtraction method. Item (8) is instead needed to provide a defined color structure to
the SMC generator. Internally, the POWHEG-BOX implements the FKS subtraction procedure
in a general way. At the beginning, it automatically evaluates the combinatorics, identifying
all the singular regions and the corresponding underlying Born contributions. It also performs
the projection of real contributions over the singular region and computes the subtraction
counterterms, from soft and collinear approximations of real emissions. Then, it builds the
ISR and FSR phase space, according to the FKS parametrization of the singular region and
performs the integration. Eventually, one gets the NLO differential cross section. At this stage,
one can also interface to some analysis routine to obtain NLO differential distributions as a
byproduct. After the integration stage, it performs the calculation of upper bounds for an
efficient generation of Sudakov-suppressed events and then the generation of hardest radiation,
according to the POWHEG Sudakov. At this point, the generated event, which contains at most
only one extra radiation, has to be passed to a standard SMC program, for developing the rest

4For the precise definition of the following routines, we refer the reader to Ref. [22].
5Internally gluons are labelled 0 instead of the PDG value of 21. At the moment of writing the event on the

Les Houches common block, the PDG value is restored.
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of the shower. This can be done either on-the-fly or storing the events on a Les Houches events
file [24]. Standard analysis routines, at partonic and hadronic level, are provided for included
processes, as well as drivers for common SMC generators. Users can modify them or implement
new ones.

2.1 Recent developments

Recently, thanks to this framework, the relatively complex process of Z + 1 jet production
has been implemented [25]. This is a promising processes for jet calibration with the early
LHC data. It is also an important source of missing energy signal as well as a background to
many new physics searches. In experimental studies carried up until now, the NLO theoretical
calculations were supplemented by correction factors for shower, hadronization and underlying
event effects. However, these factors were evaluated by means of standard LO SMC programs.
It is clear the advantage to have a SMC program which is NLO accurate, in order to ease and
improve the comparisons with experimental results. We have tried a simple approach [25] to
merge consistently Z and Z + 1 jet samples, in order to obtain a description as smooth and
accurate as possible both in the low and high-transverse momentum regions. The results are
showed in Figs. 1 and 2.

Figure 1: The pT distribution of the Z bo-
son in single Z production (blue dashed
curve), in Z + 1 jet (black solid) and in
the merged sample (red solid).

Figure 2: The pT distribution of the next-
to-hardest jet in single Z production (blue
dashed curve), in Z+1 jet (black solid) and
in the merged sample (red solid).

From the two figures, one can see how the merged sample models both the single Z Sudakov
form factor, that plays an important role in resumming collinear/soft logarithms in the low-
pT region and the high-pT behaviour of the next-to-hardest jet, which follows the Z + 1 jet
distribution. In this last figure, jest are reconstructed according to the kT algorithm, imposing
also an angular separation Rjj > 3.
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