NLO and Parton Showers: the POWHEG-BOX

Simone Alioli

in collaboration with P. Nason, C. Oleari and E. Re

Physics at LHC 2010

DESY - Hamburg

11 June 2010

INTRODUCTION

High Energy Physics studies scattering and production of elementary constituents: leptons, quarks and gauge bosons. Hadronic collisions can be well summarized by this picture:

- Parton model beam of hadrons = beam of partons
- Radiation off incoming partons (ISR)
- Primary hard scattering $(\mu \approx Q \gg \Lambda_{QCD})$
- Radiation off outgoing partons (FSR) $(Q > \mu > \Lambda_{QCD})$
- Hadronization and heavy hadrons decays ($\mu \approx \Lambda_{QCD}$)
- Multiple Particle Interactions -Underlying Event

Monte Carlo programs are computer codes able to simulate all these stages, starting from QCD, EW or BSM hard scatterings and dressing them with QCD effects.

Simone Alioli	(DESY)
---------------	--------

SMC EVENT GENERATORS

SMC's output realistic events that can be used to set up analysis strategies, study acceptance cuts and/or signal detection efficiency.

IHEP	ID	IDPDG	IST	MO1	M02	DA1	DA2	P-X	P-Y	P-Z	ENERGY	MASS	V-X	V-Y	V-Z	V-C*T
30	NU_E	12	1	28	23	0	0	64.30	25.12	-1194.4	1196.4	0.00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
31	E+	-11	1	29	23	0	0	-22.36	6.19	-234.2	235.4	0.00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
230	PIO	111	1	155	24	0	0	0.31	0.38	0.9	1.0	0.13	4.209E-11	6.148E-11	-3.341E-11	5.192E-10
231	RHO+	213	197	155	24	317	318	-0.06	0.07	0.1	0.8	0.77	4.183E-11	6.130E-11	-3.365E-11	5.189E-10
232	P	2212	1	156	24	0	0	0.40	0.78	1.0	1.6	0.94	4.156E-11	6.029E-11	-4.205E-11	5.250E-10
233	NBAR	-2112	1	156	24	0	0	-0.13	-0.35	-0.9	1.3	0.94	4.168E-11	6.021E-11	-4.217E-11	5.249E-10
234	PI-	-211	1	157	9	0	0	0.14	0.34	286.9	286.9	0.14	4.660E-13	8.237E-12	1.748E-09	1.749E-09
235	PI+	211	1	157	9	0	0	-0.14	-0.34	624.5	624.5	0.14	4.056E-13	8.532E-12	2.462E-09	2.462E-09
236	P	2212	1	158	9	0	0	-1.23	-0.26	0.9	1.8	0.94	-4.815E-11	1.893E-11	7.520E-12	3.252E-10
237	DLTABR	-2224	197	158	9	319	320	0.94	0.35	1.6	2.2	1.23	-4.817E-11	1.900E-11	7.482E-12	3.252E-10
238	PIO	111	1	159	9	0	0	0.74	-0.31	-27.9	27.9	0.13	-1.889E-10	9.893E-11	-2.123E-09	2.157E-09
239	RHOO	113	197	159	9	321	322	0.73	-0.88	-19.5	19.5	0.77	-1.888E-10	9.859E-11	-2.129E-09	2.163E-09
240	K+	321	1	160	9	0	0	0.58	0.02	-11.0	11.0	0.49	-1.890E-10	9.873E-11	-2.135E-09	2.169E-09
241	KL_1-	-10323	197	160	9	323	324	1.23	-1.50	-50.2	50.2	1.57	-1.890E-10	9.879E-11	-2.132E-09	2.166E-09
242	K-	-321	1	161	24	0	0	0.01	0.22	1.3	1.4	0.49	4.250E-11	6.333E-11	-2.746E-11	5.211E-10
243	PIO	111	1	161	24	0	0	0.31	0.38	0.2	0.6	0.13	4.301E-11	6.282E-11	-2.751E-11	5.210E-10

SMC (LO+SHOWER)

- \checkmark LO accuracy. Large dependence on $\mu_{\rm R}$ and $\mu_{\rm F}$
 - Extra emissions accurate only in soft/collinear approx.
 - Sudakov suppression of soft/collinear emissions
 - Realistic events in the output

NLO

- Accuracy up to a further order in $\alpha_{\rm S}$
- Reduced dependence on $\mu_{
 m R}$ and $\mu_{
 m F}$
- Parton level output only. Low final-state multiplicity.
 - Numerical instability due to large cancellations

Try to merge benefits (and avoid drawbacks) of both approaches!

PLHC2010

IMPROVING SMC'S AND NLO

- **X** A K factor = $\frac{\sigma_{NLO}}{\sigma_{LO}}$ correction may improve inclusive quantities
- X Matrix element corrections added to obtain better shape predictions (e.g. CKKW, MLM)
 - ⇒ Only add further real contributions (maintaining LO normalization)
 - ⇒ A matching prescription to avoid double-counting of radiation must be defined
 - ⇒ Large uncertainty under scale variations due to the lack of virtual corrections
 - $\alpha_{\rm S}^n(f\mu) \approx \alpha_{\rm S}^n(\mu)(1 b_0\alpha_{\rm S}(\mu)\log{(f^2)})^n \approx \alpha_{\rm S}^n(\mu)(1 \pm n\alpha_{\rm S}(\mu))$

✓ Use full NLO calculation as "hard subprocess" for the SMC ⇒ NLO+PS

Only two general method perform this merging for hadronic collisions avoiding double-counting:

- MC@NLO [Frixione & Webber, JHEP 0206:029,2002]
- POWHEG [Nason, JHEP 0411:040, 2004] [Frixione, Nason & Oleari, JHEP 0711:070, 2007]

Merging of NLO+PS with ME corrections. NLO accuracy can be reached reweighting ME+PS by a Φ_B -dependent K-factor. [Nason& Hamilton, arXiv:1004.1764] Not easy to evaluate! Approximate solution MENLOPS for W and $t\bar{t}$ implemented

NLO AND SMC FORMULAS

I

NLO calculation (subtraction method):

$$d\Phi_{n+1} = d\Phi_n \, d\Phi_{\rm rad} \qquad d\Phi_{\rm rad} \div dt \, dz \, \frac{d\varphi}{2\pi}$$

$$d\sigma_{\text{NL0}} = \left\{ B(\Phi_n) + V(\Phi_n) + \left[\underbrace{\underline{R(\Phi_n, \Phi_{\text{rad}})}_{finite}}^{divergent} \right] d\Phi_{\text{rad}} \right\} d\Phi_n$$

$$\text{nclusive NLO cross section}$$
at fixed underlying Born
$$\int d\sigma_{\text{NL0}} d\Phi_{\text{rad}} = \bar{B}(\Phi_n) \quad , \qquad V(\Phi_n) = \underbrace{\underbrace{\underbrace{V_b(\Phi_n)}_{divergent}}_{finite}}^{divergent} + \underbrace{\int C(\Phi_n, \Phi_{\text{rad}})}_{finite} d\Phi_{\text{rad}}$$

• Standard SMC's first emission:

$$d\sigma_{\rm SMC} = \underbrace{B(\Phi_n)}^{Born} d\Phi_n \left\{ \begin{aligned} \lim_{k_{\rm T} \to 0} \frac{R(\Phi_{n+1})/B(\Phi_n)}{\Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t)} & \underbrace{\frac{\alpha_{\rm S}(t)}{2\pi} \frac{1}{t} P(z)}_{\Delta_{\rm SMC}(t)} d\Phi_{\rm rad}^{\rm SMC} \right\} \\ \Delta_{\rm SMC}(t) = \underbrace{\exp\left[-\int d\Phi_{\rm rad}' \frac{\alpha_{\rm S}(t')}{2\pi} \frac{1}{t'} P(z') \theta(t'-t)\right]}_{\rm SMC \ Sudakov}$$

Simone Alioli (DESY)

POWHEG

$$d\sigma_{\text{POWHEG}} = \bar{B}(\Phi_n) \ d\Phi_n \left\{ \Delta_{\text{POWHEG}}(\Phi_n, p_{\text{T}}^{\min}) + \Delta_{\text{POWHEG}}(\Phi_n, k_{\text{T}}) \frac{R(\Phi_n, \Phi_{\text{rad}})}{B(\Phi_n)} \ \theta \left(k_{\text{T}} - p_{\text{T}}\right) \ d\Phi_{\text{rad}} \right\}$$

It yields the correct NLO cross section for inclusive quantities.

✓ No negative weights! $\bar{B} = B(\Phi_n) + V(\Phi_n) + \int [R(\Phi_n, \Phi_{rad}) - C(\Phi_n, \Phi_{rad})] d\Phi_{rad} < 0$

only if NLO > LO, i.e. where perturbation expansion breaks down!

Probability of not emitting with transverse momentum harder than $p_{\rm T}$:

$$\Delta_{\text{POWHEG}}(\Phi_n, p_{\text{T}}) = \exp\left[-\int d\Phi_{\text{rad}}' \frac{R(\Phi_n, \Phi_{\text{rad}}')}{B(\Phi_n)} \theta\left(k_{\text{T}}(\Phi_n, \Phi_{\text{rad}}') - p_{\text{T}}\right)\right]$$

It has the same LL accuracy of a SMC since for small $k_{\rm T}$'s

$$\frac{R(\Phi_n, \Phi_{\rm rad})}{B(\Phi_n)} d\Phi_{\rm rad} \approx \frac{\alpha_{\rm S}(t)}{2\pi} \frac{1}{t} P(z) \, dt \, dz \, \frac{d\varphi}{2\pi} \qquad \text{and} \qquad \bar{B} \approx B \left(1 + \mathcal{O}(\alpha_{\rm S})\right)$$

The large $k_{
m T}$'s accuracy is preserved since $\Delta_{
m POWHEG}(\Phi_n,p_{
m T})pprox 1$ and

 $d\sigma_{\text{POWHEG}} \approx \frac{\bar{B}(\Phi_n)}{B(\Phi_n)} R(\Phi_n, \Phi_{\text{rad}}) d\Phi_n d\Phi_{\text{rad}} \approx R(\Phi_n, \Phi_{\text{rad}}) \left(1 + \mathcal{O}(\alpha_{\text{S}})\right) d\Phi_n d\Phi_{\text{rad}}$

THE POWHEG-BOX

- Framework for the implementation of a POWHEG generator for a generic NLO process
- Practical implementation of the theoretical construction of the POWHEG general formulation presented in [Frixione,Nason,Oleari,JHEP 0711:070,2007]
- FKS subtraction approach followed, hiding all technicalities to the user
- Publicly available code

http://powhegbox.mib.infn.it/~nason/POWHEG

distributed according to the "MCNET GUIDELINES for Event Generator Authors and Users "

Latest releases available trough

svn co [--revision n] svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX

The user should only communicate to the POWHEG-BOX the following informations:

- ► The number of legs in Born process (e.g. nlegborn = 5 for $pp \rightarrow (Z \rightarrow e^+e^-) + j$)
- The list of flavour of Born and Real processes

flst_born(k=1..nlegborn, j=1..flst_nborn)
flst_real(k=1..nlegreal, j=1..flst_nreal)

according to PDG conventions. Flavor defined incoming (outgoing) for incoming (outgoing) fermion lines, 0 for gluons (e.g. [5, 2, 23, 6, 3, 0] for $b \ u \rightarrow Z \ t \ s \ g$)

- The Born phase space Born_phsp(xborn) for xborn(1...ndims) randoms, that sets: the Born Jacobian kn_jacborn, the Born momenta kn_pborn, kn_cmpborn in lab. and CM frames and the Bjorken x's kn_xb1, kn_xb2
- The inizialization of the couplings init_couplings and the setting of the scales set_fac_ren_scales (muf, mur)
- The Born squared amplitudes $\mathcal{B} = |\mathcal{M}|^2$, the color-ordered Born squared amplitudes \mathcal{B}_{jk} and the helicity correlated Born squared amplitudes $\mathcal{B}_{k,\mu\nu}$, where k runs over all external gluons

```
setborn(p,bflav,born,bornjk,bornmunu)
```

for momenta p(0:3,1:nlegborn) and flavour string bflav(1:nlegborn)

• The Real squared amplitudes \mathcal{R}

```
setreal(p,rflav,amp2)
```

for momenta p(0:3,1:nlegreal) and flavour string rflav(1:nlegreal)

► The finite part of the interference of Born and virtual amplitude contributions $\mathcal{V}_{\rm b} = 2 \operatorname{Re} \{ \mathcal{B} \times \mathcal{V} \}$, after factorizing out $\mathcal{N} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\frac{\mu_{\rm R}^2}{Q^2} \right)^{\epsilon}$

setvirtual(p(0:3,1:nlegborn),vflav(1:legborn),virtual)

► The Born color structures in the large N_c limit, via the LH interface borncolour_lh

Common ingredients of any NLO calculation in a subtraction method

Simone Alioli	(DESY)
---------------	--------

PLHC2010

- ✓ The combinatorics, identifying of all the singular regions.
- \checkmark The projection of real contributions over the singular regions
- \checkmark The counterterms, built up from soft and collinear approximations of real emissions.
- ✓ The ISR and FSR phase space, according to the FKS parametrization of the singular region
- ✓ The NLO differential cross section.
 - BYPRODUCT: NLO distributions in the FKS subtraction scheme. Standard parton-level analysis provided, users can modify it or implement new one.

It also performs

- ✓ The calculation of upper bounds for an efficient generation of Sudakov-suppressed events
 - The generation of hardest radiation, according to the POWHEG Sudakov
- The communication with a SMC program, either passing the generated events on-the-fly or storing them on a LesHouches events file.
- ✓ Simple standard analysis before and after shower and hadronization provided. Users can modify them or implement new ones.

THE POWHEG METHOD AND THE POWHEG-BOX

The POWHEG method had already been successfully tested in

- $p \stackrel{(-)}{p}
 ightarrow ZZ$ [Nason and Ridolfi,JHEP 0608:077,2006]
- $p \stackrel{(-)}{p} \rightarrow Q \bar{Q}$, Q = c, b, t with spin corr. [Frixione,Nason and Ridolfi,JHEP 0709:126,2007]
- $e^+e^- \rightarrow q\bar{q}$ [Latunde-Dada,Gieseke,Webber,JHEP 0702:051,2007] $e^+e^- \rightarrow t\bar{t}$ with NLO top decay [Latunde-Dada, Eur.Phys.J.C58:543-554,2008]
- $p^{(-)}_{p} \rightarrow W'$ [Latunde-Dada and Papaefstathiou, arXiv:0901.3685]
- $p^{(-)} \rightarrow H + V$ [Hamilton,Richardson and Tully, arXiv: 0903.4345]

The POWHEG-BOX is a package in evolution! Already available :

• $p \stackrel{(-)}{p} \rightarrow Z, W$ with spin correlations [S.A.,Nason,Oleari and Re,JHEP 0807:060,2008] HERWIG++ [Hamilton,Richardson and Tully, JHEP 0810:015,2008]

$$\checkmark \ \sigma(q\bar{q}' \to W^{\pm} \to e^{\pm} \overset{(-)}{\nu_{\ell}}) = 0 \text{ if } e \parallel q$$

Damping and introduction of remnants

THE POWHEG METHOD AND THE POWHEG-BOX

The POWHEG method had already been successfully tested in

- $p \stackrel{(-)}{p}
 ightarrow ZZ$ [Nason and Ridolfi,JHEP 0608:077,2006]
- $p \stackrel{(-)}{p} \rightarrow Q \bar{Q}$, Q = c, b, t with spin corr. [Frixione,Nason and Ridolfi,JHEP 0709:126,2007]
- $e^+e^- \rightarrow q\bar{q}$ [Latunde-Dada,Gieseke,Webber,JHEP 0702:051,2007] $e^+e^- \rightarrow t\bar{t}$ with NLO top decay [Latunde-Dada, Eur.Phys.J.C58:543-554,2008]
- $p^{(-)}_{p} \rightarrow W'$ [Latunde-Dada and Papaefstathiou, arXiv:0901.3685]
- $p^{(-)} \rightarrow H + V$ [Hamilton,Richardson and Tully, arXiv: 0903.4345]

The POWHEG-BOX is a package in evolution! Already available :

• $p \stackrel{(-)}{p} \rightarrow Z, W$ with spin correlations [S.A.,Nason,Oleari and Re,JHEP 0807:060,2008] HERWIG++ [Hamilton,Richardson and Tully, JHEP 0810:015,2008]

$$\bigstar \ \sigma(q\bar{q}' \to W^{\pm} \to e^{\pm} \overset{(-)}{\nu_{\ell}}) = 0 \text{ if } e \parallel q$$

Damping and introduction of remnants

[S.A.,Nason,Oleari,Re, JHEP 0904:002,2009]

• $gg \to H$

[S.A.,Nason,Oleari,Re, JHEP 0904:002,2009]

• $gg \to H$

- $p(p) \rightarrow t + j$ (single top s and t-channel) [S.A.,Nason,Oleari and Re, JHEP 0909:111,2009]
- TeV, *t*-channel

• TeV, s-channel

● Very good agreement with NLO and MC@NLO for inclusive quantities

Simone Alioli (DESY)

• $p^{(-)}_p \rightarrow t + j$ (single top s and t-channel) [S.A.,Nason,Oleari and Re, JHEP 0909:111,2009]

No NLO top decay, approx. spin correlations

[Frixione et al. JHEP 0704:081,2007]

Cuts as in [hep-ph/0702198] to isolate leptons and an hardest central jet

• $p^{(-)} \rightarrow t + j$ (single top s and t-channel) [S.A.,Nason,Oleari and Re, JHEP 0909:111,2009]

Known problem with initial-state heavy quarks in HERWIG. Fixed in HERWIG++

• $p(p) \rightarrow t + j$ (single top s and t-channel) [S.A.,Nason,Oleari and Re, JHEP 0909:111,2009]

Known problem with initial-state heavy quarks in HERWIG. Fixed in HERWIG++

PLHC2010

The powheg-box: Z plus jet

- Non trivial process definition because Born contributions are IR divergent
- In a NLO computation is sufficient to ask that the observable \mathcal{O}_n is infrared safe and that \mathcal{O}_{n+1} vanish fast enough if two singular region are approached at the same time.
- POWHEG generates the Born process first, then it attaches radiation
- Need to introduce a process-defining cutoff. Accept Z + 1 jet as Born process only if $p_T^{jet} > p_T^{Born}$ Study the dependence of the results on this cutoff
- $\bullet\,$ Merge consistently Z and Z+1~jet samples, in order to obtain a description as smooth and accurate as possible.

How to build the merged sample :

- \checkmark Pick a random event from the Z or Z + 1 jet samples according to the relative cross sections
- ✓ Shower and hadronize it with a chosen SMC program (HERWIG, PYTHIA)
- $\checkmark\,$ Choose to retain the event according to a veto based on the $Z\,p_{\rm T}$ after shower and hadronization:
 - At high $p_{\rm T} \gtrsim 30{\text{-}}40 \text{ GeV}$ keep it only if it belongs to Z + 1 jet sample
 - At low $p_{\rm T} (\lesssim 10\text{-}12~{\rm GeV})$ keep it only if it belongs to Z sample
 - In the intermediate region combine both with a smooth function

X If the veto is failed discard the event and pick another one

Merging Z and $Z + 1 \ jet$ samples

Results obtained with **HERWIG** shower & hadronization

Merging Z and $Z + 1 \ jet$ samples

Results obtained with **HERWIG** shower & hadronization

Merging Z and $Z + 1 \ jet$ samples

Results obtained with **PYTHIA** shower & hadronization

CONCLUSIONS AND OUTLOOK

- POWHEG proved to be a valid method for implement NLO corrections in SMC's. SMC independent and with positive weighted events only
- A general framework, named POWHEG-BOX, for implementing an arbitrary process in the FKS subtraction approach has been released and is publicly available!
- Several process already implemented: single vector boson, Higgs via gluon and weak boson fusion, single top, heavy quarks
- Z + jet production ready, merging with Z sample and comparison with D0 and CDF data in progress

Outlook :

- Single-top in the Wt channel (Re)
- MSSM $H^{\pm}t$ associated production (Weydert, Kovarik, Klasen, Nason)
- W + jet, $t\bar{t} + jet$, di-jet are next targets for the POWHEG BOX.
- New problems may show up! So far the POWHEG method proved to be flexible enough to face them !
- Merging NLO+PS with ME corrections.

Thank you for your attention!

EXTRA SLIDES

NLO ACCURACY OF POWHEG FORMULA (1)

• Use the POWHEG formula

$$d\sigma = \bar{B}(\Phi_n) \ d\Phi_n \ \left\{ \Delta(\Phi_n, p_{\rm T}^{\rm min}) + \Delta(\Phi_n, k_{\rm T}) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \ \theta(k_{\rm T} - p_{\rm T}^{\rm min}) \ d\Phi_{\rm rad} \right\}$$

 $\bullet\,$ to calculate the expectation value of a generic observable $<{\cal O}>=$

$$= \int \bar{B}(\Phi_{n}) \, d\Phi_{n} \Biggl\{ \Delta(\Phi_{n}, p_{\mathrm{T}}^{\min}) O_{n}(\Phi_{n}) + \int_{p_{\mathrm{T}}^{\min}} \Delta(\Phi_{n}, k_{\mathrm{T}}) \frac{R(\Phi_{n+1})}{B(\Phi_{n})} O_{n+1}(\Phi_{n+1}) \, d\Phi_{\mathrm{rad}} \Biggr\}$$

$$= \int \bar{B}(\Phi_{n}) \, d\Phi_{n} \, \Biggl\{ \Biggl[\Delta(\Phi_{n}, p_{\mathrm{T}}^{\min}) + \int_{p_{\mathrm{T}}^{\min}} \Delta(\Phi_{n}, k_{\mathrm{T}}) \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \, d\Phi_{\mathrm{rad}} \Biggr] O_{n}(\Phi_{n})$$

$$+ \int_{p_{\mathrm{T}}^{\min}} \Delta(\Phi_{n}, k_{\mathrm{T}}) \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \left[O_{n+1}(\Phi_{n+1}) - O_{n}(\Phi_{n}) \right] \, d\Phi_{\mathrm{rad}} \Biggr\}$$

- O_n, O_{n+1} are the actual forms of \mathcal{O} in the n, n+1-body phase space.
- ${\cal O}$ is required to be infrared-safe and to vanish fast enough when two singular regions are approached at the same time

NLO ACCURACY OF POWHEG FORMULA (2)

Now observe that

$$\begin{split} &\int_{p_{\mathrm{T}}^{\mathrm{min}}} \frac{d\Phi_{\mathrm{rad}}}{B(\Phi_{n})} \Delta(\Phi_{n}, k_{\mathrm{T}}) \ = \ \int_{p_{\mathrm{T}}^{\mathrm{min}}}^{\infty} dp_{\mathrm{T}}' \int d\Phi_{\mathrm{rad}} \ \delta(k_{\mathrm{T}} - p_{\mathrm{T}}') \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \Delta(\Phi_{n}, p_{\mathrm{T}}') \\ &= -\int_{p_{\mathrm{T}}^{\mathrm{min}}}^{\infty} dp_{\mathrm{T}}' \Delta(\Phi_{n}, p_{\mathrm{T}}') \frac{d}{dp_{\mathrm{T}}'} \int_{p_{\mathrm{T}}^{\mathrm{min}}} d\Phi_{\mathrm{rad}} \ \theta(k_{\mathrm{T}} - p_{\mathrm{T}}') \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \\ &= \int_{p_{\mathrm{T}}^{\mathrm{min}}}^{\infty} dp_{\mathrm{T}}' \frac{d}{dp_{\mathrm{T}}'} \Delta(\Phi_{n}, p_{\mathrm{T}}') \ = \ 1 - \Delta(\Phi_{n}, p_{\mathrm{T}}^{\mathrm{min}}) \end{split}$$

- Furthermore we can replace $\bar{B}(\Phi_n) \approx B(\Phi_n) (1 + O(\alpha_s))$
- and also $\Delta(\Phi_n, k_T) \approx 1 + \mathcal{O}(\alpha_S)$ since $[O_{n+1} O_n] \rightarrow 0$ at small k_T 's
- The final result is (up to $p_{\rm T}^{\rm min}$ power-suppressed terms)

$$\langle \mathcal{O} \rangle = \int d\Phi_n \bar{B}(\Phi_n) \, 1 \, O_n(\Phi_n)$$

+
$$\int 1 \frac{R(\Phi_{n+1})}{1} \left[O_{n+1}(\Phi_{n+1}) - O_n(\Phi_n) \right] \, d\Phi_{\text{rad}} + \mathcal{O}(\alpha_{\text{S}})$$

MC@NLO

 $d\sigma_{\text{MC@NL0}} = \underbrace{\overline{B}_{\text{SMC}}(\Phi_n)}_{\text{B}_{\text{rad}}} d\Phi_n \left\{ \Delta_{\text{SMC}}(t_0) + \Delta_{\text{SMC}}(t) \frac{R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}})}{B(\Phi_n)} d\Phi_{\text{rad}}^{\text{SMC}} \right\} \\ + \underbrace{\left[R(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) - R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) \right]}_{\text{MC@NL0}} d\Phi_n \ d\Phi_{\text{rad}}^{\text{SMC}} \\ \overline{B}_{\text{SMC}}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) - C(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) \right] \ d\Phi_{\text{rad}}^{\text{SMC}} \\ \Delta_{\text{SMC}}(t) = \exp \left[- \int d\Phi_{\text{rad}}' \frac{R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}')}{B(\Phi_n)} \theta(t'-t) \right] \iff \text{HERWIG or PYTHIA Sudakov!}$

- ✓ NLO accuracy for IR safe observables
- Exclusive observables are described no worse than in usual (N)LL SMC's
- X Dependence of PS algorithm. Need to express NLO calulation in Φ_{rad}^{SMC} variables

MC@NLO DIP IN HARDEST RADIATION

$$\begin{split} \Delta_{\mathrm{HW}}(t) &= \exp\left[-\int d\Phi_{\mathrm{rad}}' \frac{R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}}')}{B(\Phi_n)} \theta\left(t'-t\right)\right] &\Leftarrow \mathrm{HERWIG} \ \mathrm{Sudakov!} \\ d\sigma_{\mathrm{MCQNLO}} &= \bar{B}_{\mathrm{HW}}(\Phi_n) \ d\Phi_n \ \left\{\Delta_{\mathrm{HW}}(t_0) + \Delta_{\mathrm{HW}}(t) \frac{R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}})}{B(\Phi_n)} \ d\Phi_{\mathrm{rad}}\right\} \ + \\ & \left[R(\Phi_n, \Phi_{\mathrm{rad}}) - R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}})\right] \ d\Phi_n \ d\Phi_{\mathrm{rad}} \\ \bar{B}_{\mathrm{HW}}(\Phi_n) &= B(\Phi_n) + V(\Phi_n) + \int \left[R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}}) - C(\Phi_n, \Phi_{\mathrm{rad}})\right] \ d\Phi_{\mathrm{rad}} \end{split}$$

At high $p_{\rm T}$ the cross section goes as

$$d\sigma_{\text{MC@NLO}} \approx \left(\frac{\bar{B}_{\text{HW}}(\Phi_n)}{B(\Phi_n)} - 1\right) R_{\text{HW}}(\Phi_n, \Phi_{\text{rad}}) d\Phi_n d\Phi_{\text{rad}} + R(\Phi_n, \Phi_{\text{rad}}) d\Phi_n d\Phi_{\text{rad}}$$

Test : Replace $\bar{B}_{\rm HW}(\Phi_n)$ with $B(\Phi_n)$ in generation of S-type events

The dip seems to disappear

NLL ACCURACY OF THE POWHEG SUDAKOV FORM FACTOR

Substitute $\alpha_{\rm S} \to A\left(\alpha_{\rm S}\left(k_{\rm T}^2\right)\right)$ in the Sudakov exponent, with

$$A(\alpha_{\rm S}) = \alpha_{\rm S} \left\{ 1 + \frac{\alpha_{\rm S}}{2\pi} \left[\left(\frac{67}{18} - \frac{\pi^2}{6} \right) C_{\rm A} - \frac{5}{9} n_{\rm f} \right] \right\}$$

and one-loop expression for α_s , to get NLL resummed results for process with up to 3 coloured partons at the Born level [Catani,Marchesini and Webber Nucl.Phys.B349]

 $\mbox{For} > 3$ coloured partons, soft NLL contributions exponentiates only in a matrix sense

- Need to diagonalize the colour structures
- $\bullet\,$ Always possible to take the large N_c limit and get NLL

Comparison with HqT program [Bozzi,Catani,de Florian and Grazzini, Nucl.Phys.B737] \Rightarrow

SINGLE VECTOR BOSON PRODUCTION AND DECAY - TEVATRON RESULTS

- Good agreement both at high and low p_T
- PYTHIA includes hard ME corrections in a POWHEG-like fashion, but only with LO normalization !
- Similar results @LHC

[SA,Nason,Oleari and Re,JHEP 0807:060,2008]

• Public code released http://moby.mib.infn.it/~nason/POWHEG

Z boson: comparison with TEV data

- Interesting processes for luminosity measurements, to estimate SM background to new physics,etc. Very clean signal thanks to decay modes Z → ℓ⁺ℓ⁻
- Intrinsic $p_{\rm T}$ 2.5 GeV
- POWHEG+PYTHIA \sim MC@NLO POWHEG+HERWIG \sim PYTHIA
- Sensitivity to long distance effects: hadronization model and $p_{\rm T}$ smearing

Sensible parameter tuning needed to fully accommodate data

HIGGS BOSON PRODUCTION AT THE LHC

Gluon fusion

GLUON FUSION - OUTLINE OF CALCULATIONS

• Lowest order process is loop induced

$$\mathcal{B}_{gg} = \frac{\alpha_{\rm S}^2}{\pi^2} \frac{G_F M^2}{576 \sqrt{2}} \left| \frac{3}{2} \sum_Q \tau_Q \left[1 + (1 - \tau_Q) f(\tau_Q) \right] \right|^2, \qquad \tau_Q = 4m_Q^2 / M^2$$

where the sum runs over the heavy flavours circulating in the loop (only top quark in our analysis). The function f is given by

$$\begin{split} f(\tau_Q) &= \begin{cases} & \arcsin^2 \frac{1}{\sqrt{\tau_Q}} & \tau_Q \geq 1 \,, \\ & -\frac{1}{4} \left[\log \left(\frac{1 + \sqrt{(1 - \tau_Q)}}{1 - \sqrt{(1 - \tau_Q)}} \right) - i\pi \right]^2 & \tau_Q < 1. \end{cases} \end{split}$$

- Width is rapidly increasing with mass. $\delta(M^2 m_H^2) \rightarrow \frac{1}{\pi} \frac{M^2 \Gamma_H/m_H}{(M^2 m_H^2)^2 + (M^2 \Gamma_H/m_H)^2}$
- We retain full m_t dependence at L0, $m_t \rightarrow \infty$ approximation for NLO via

$$\mathcal{L}_{eff} = -\frac{\alpha_{\rm S}}{12\pi v} H G_a^{\mu\nu} G_{\mu\nu}^a \left[1 + \frac{11}{4} \frac{\alpha_{\rm S}}{\pi} + \mathcal{O}(\alpha_{\rm S}^2) \right] \,, \qquad v = (\sqrt{2}G_F)^{-\frac{1}{2}} = 246 \; {\rm GeV}$$

Good approx. even over $t\bar{t}$ threshold \Rightarrow Bulk of NLO corr. due to collinear/soft gluons \Rightarrow Breaks down in presence of high- p_T jet(s)

 Subtraction perfomed in FKS framework ⇒ Coll. and soft limits of real matrix elements are used to regulate IR divergent real contributions by means of ()₊ distributions

HIGGS BOSON PRODUCTION AT THE LHC - $gg \rightarrow H$

Differences in high (MC@NLO) and low- p_{T} (PYTHIA) regions at the LHC.

Higgs boson production at the LHC - $gg \rightarrow H$

Differences in high (MC@NLO) and low- $p_{\rm T}$ (PYTHIA) regions at the LHC.

Better agreement with NNLO results, but still enough flexibility to get rid of this feature!

Simone Alioli (DESY)

REDUCTION OF REAL CONTRIBUTION ENTERING THE SUDAKOV FF

HARDEST JET RAPIDITY DIP

• ALPGEN vs. MC@NLO comparative study for $t\bar{t}$ productions

[Mangano,Moretti,Piccinini and Treccani, JHEP 0701:013]

- ALPGEN has better high jet multiplicity (Exact ME), but only LO normalization
- MC@NLO is correct at NLO, but shows a dip in the hardest jet rapidity distribution
- NLO calculation of $p\bar{p} \rightarrow t\bar{t} + jet$ shows no dip too

[Dittmaier,Uwer and and Weinzierl, arXiv:0810.0452]

HARDEST JET RAPIDITY AND RAPIDITY DIFFERENCE

Hardest jet - Z rapidity difference @ TEV

HARDEST JET - HIGGS BOSON RAPIDITY DIFFERENCE

Similar results from Hamilton, Richardson and Tully [ArXiv:0903.4345]

Simone Alioli (DESY)

PLHC2010

SCALES DEPENDENCE

• NNLO results obtained using HNNLO

[Catani and Grazzini, arXiv:0802.1410]

SINGLE TOP PRODUCTION

- Single-Top production is the EW production of a top quark without its antiparticle
- Production channels are classified according to the virtuality of the vector boson involved

s-CHANNEL

- Predominant at TeV, negligible at LHC
- Sensible to new physics (W' exchange)

t-CHANNEL

- Dominant both at TeV and LHC
- Direct constraint on *b pdf* (otherwise generated via perturbative evolution)

Wt associated production

- Negligible at TeV, but relevant at LHC
- Non-trivial definition of NLO corrections (interference with $t\bar{t}$ production, if $\bar{t} \rightarrow W\bar{b}$)

SINGLE TOP PRODUCTION

• All channels allow V_{tb} to be measured without assuming unitarity of CKM (V_{tb} in a production process)

- Direct probe of V-A structure of weak interactions via spin correlation effects
 - ⇒ top-quark decays before hadronizing
 - \Rightarrow Only left-handed charged current involved
- First POWHEG implementation with both ISR and FSR
 - ⇒ Simplest because LO is finite without cuts (EW process)
- FKS subtraction scheme adopted
- Only *top*-quark considered massive $\Rightarrow b$ massless, 5-flavour *pdf*s
- Up to now only s- and t-channels implemented
- A posteriori inclusion of top decay, including spin correlation effects

RESULTS FOR SINGLE TOP: POWHEG VS. MC@NLO VS. NLO

• TeV, *t*-channel

• TeV, s-channel

• Very good agreement with NLO and MC@NLO for inclusive quantities

Simone Alioli (DESY)

PLHC2010

RESULTS FOR SINGLE TOP: POWHEG VS. MC@NLO VS. NLO

- Sudakov suppression for ISR and FSR in more exclusive quantities
- Difference in the (tj1) high-pT tail due to the pT imbalance from multiple emissions and to the top-jet clustering
- Relative momentum inside the hardest jet

$$p_{\mathrm{T}}^{\mathrm{rel}} = \sum_{i \in j_1} \frac{\left| \vec{k}_i \times \vec{p}_{j_1} \right|}{|\vec{p}_{j_1}|}$$

in the $y_{j_1} = 0$ frame

