MC Developments in Herwig++ — Min Bias and Underlying Event —

Stefan Gieseke

Institut für Theoretische Physik KIT

Physics at the LHC, DESY HH, 7–11 June 2010

Work with Manuel Bähr, John Butterworth, Mike Seymour, Andrzej Siodmok

UA5 model (deprecated, only for reference)

Included from Herwig++ 2.0.

[Herwig++, hep-ph/0609306]

- Little predictive power.
- ► Only gets averages right, not large (and interesting!) fluctiations → mini jets.
- ► Was default in fHerwig. Superseded by JIMMY.

[JM Butterworth, JR Forshaw, MH Seymour, ZP C72 637 (1996)]

Semihard UE

▶ Default from Herwig++ 2.1.

[Herwig++, 0711.3137]

• Multiple hard interactions, $p_t \ge p_t^{\min}$. [Ba

[Bähr, SG, Seymour, JHEP 0807:076]

- Similar to JIMMY.
- Good description of harder Run I UE data (Jet20).

Semihard+Soft UE

▶ Default from Herwig++ 2.3.

[Herwig++, 0812.0529]

- Extension to soft interactions $p_t < p_t^{\min}$.
- Theoretical work with simplest possible extension.

[Bähr, Butterworth, Seymour, JHEP 0901:065]

"Hot Spot" model.

[Bähr, Butterworth, SG, Seymour, 0905.4671]

 No development since then (currently at v2.4.2), but new data.

This talk

- Constrain parameter space from Tevatron.
- First look at LHC data.
- How well does it work out of the box?

This talk

- Constrain parameter space from Tevatron.
- ▶ First look at LHC data.
- How well does it work out of the box?
- Enough flexibility in parameter space?
- Model too simple?
- pdfs/modelling of MPI pdfs?

Mulitple hard interactions

Starting point: hard inclusive jet cross section.

$$\sigma^{\mathrm{inc}}(s;p_t^{\mathrm{min}}) = \sum_{i,j} \int_{p_t^{\mathrm{min}^2}} \mathrm{d}p_t^2 f_{i/h_1}(x_1,\mu^2) \otimes \frac{\mathrm{d}\hat{\sigma}_{i,j}}{\mathrm{d}p_t^2} \otimes f_{j/h_2}(x_2,\mu^2),$$

 $\sigma^{\text{inc}} > \sigma_{\text{tot}}$ eventually (for moderately small p_t^{\min}).

Starting point: hard inclusive jet cross section.

$$\boldsymbol{\sigma}^{\mathrm{inc}}(s; p_t^{\mathrm{min}}) = \sum_{i,j} \int_{p_t^{\mathrm{min}^2}} \mathrm{d}p_t^2 f_{i/h_1}(x_1, \mu^2) \otimes \frac{\mathrm{d}\hat{\sigma}_{i,j}}{\mathrm{d}p_t^2} \otimes f_{j/h_2}(x_2, \mu^2) \,,$$

 $\sigma^{\text{inc}} > \sigma_{\text{tot}}$ eventually (for moderately small p_t^{\min}).

Interpretation: σ^{inc} counts *all* partonic scatters that happen during a single *pp* collision \Rightarrow more than a single interaction.

$$\sigma^{\rm inc} = \bar{n}\sigma_{\rm inel}$$
.

Use eikonal approximation (= independent scatters). Leads to Poisson distribution of number *m* of additional scatters,

$$P_m(\vec{b},s) = \frac{\bar{n}(\vec{b},s)^m}{m!} e^{-\bar{n}(\vec{b},s)}$$

Then we get σ_{inel} :

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \sum_{n=1}^{\infty} P_m(\vec{b},s) = \int d^2 \vec{b} \left(1 - e^{-\bar{n}(\vec{b},s)}\right)$$

Use eikonal approximation (= independent scatters). Leads to Poisson distribution of number *m* of additional scatters,

$$P_m(\vec{b},s) = \frac{\bar{n}(\vec{b},s)^m}{m!} e^{-\bar{n}(\vec{b},s)}$$

Then we get σ_{inel} :

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \sum_{n=1}^{\infty} P_m(\vec{b},s) = \int d^2 \vec{b} \left(1 - e^{-\vec{n}(\vec{b},s)}\right)$$

Cf. σ_{inel} from scattering theory in eikonal approx. with scattering amplitude $a(\vec{b},s) = \frac{1}{2i}(e^{-\chi(\vec{b},s)} - 1)$

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \left(1 - e^{-2\chi(\vec{b},s)} \right) \qquad \Rightarrow \quad \chi(\vec{b},s) = \frac{1}{2} \bar{n}(\vec{b},s) \; .$$

 $\chi(\vec{b},s)$ is called *eikonal* function.

Stefan Gieseke · PLHC2010 · DESY HH 7-11 June 2010

Calculation of $\bar{n}(\vec{b},s)$ from parton model assumptions:

$$\begin{split} \bar{n}(\vec{b},s) &= L_{\text{partons}}(x_1, x_2, \vec{b}) \otimes \sum_{ij} \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &= \sum_{ij} \frac{1}{1+\delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times D_{i/A}(x_1, p_t^2, |\vec{b}'|) D_{j/B}(x_2, p_t^2, |\vec{b} - \vec{b}'|) \end{split}$$

Calculation of $\bar{n}(\vec{b},s)$ from parton model assumptions:

$$\begin{split} \bar{n}(\vec{b},s) &= L_{\text{partons}}(x_1, x_2, \vec{b}) \otimes \sum_{ij} \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &= \sum_{ij} \frac{1}{1 + \delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times D_{i/A}(x_1, p_t^2, |\vec{b}'|) D_{j/B}(x_2, p_t^2, |\vec{b} - \vec{b}'|) \\ &= \sum_{ij} \frac{1}{1 + \delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times f_{i/A}(x_1, p_t^2) G_A(|\vec{b}'|) f_{j/B}(x_2, p_t^2) G_B(|\vec{b} - \vec{b}'|) \\ &= A(\vec{b}) \sigma^{\text{inc}}(s; p_t^{\text{min}}) . \end{split}$$

 $\bar{n}($

Calculation of $\bar{n}(\vec{b},s)$ from parton model assumptions:

$$\begin{split} \vec{b},s) &= L_{\text{partons}}(x_1, x_2, \vec{b}) \otimes \sum_{ij} \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &= \sum_{ij} \frac{1}{1 + \delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times D_{i/A}(x_1, p_t^2, |\vec{b}'|) D_{j/B}(x_2, p_t^2, |\vec{b} - \vec{b}'|) \\ &= \sum_{ij} \frac{1}{1 + \delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times f_{i/A}(x_1, p_t^2) G_A(|\vec{b}'|) f_{j/B}(x_2, p_t^2) G_B(|\vec{b} - \vec{b}'|) \\ &= A(\vec{b}) \sigma^{\text{inc}}(s; p_t^{\text{min}}) . \end{split}$$

$$\Rightarrow \quad \chi(\vec{b},s) = \frac{1}{2}\bar{n}(\vec{b},s) = \frac{1}{2}A(\vec{b})\sigma^{\text{inc}}(s;p_t^{\text{min}})$$

.

$$\Rightarrow$$
 Two main parameters: μ^2 , p_t^{\min} .

Unitarized cross sections

Semi hard underlying event

Good description of Run I Underlying event data ($\chi^2 = 1.3$).

Stefan Gieseke · PLHC2010 · DESY HH 7-11 June 2010

Semi hard underlying event

Good description of Run I Underlying event data ($\chi^2 = 1.3$).

Only $p_T^{\text{ljet}} > 20 \,\text{GeV}$.

Stefan Gieseke · PLHC2010 · DESY HH 7-11 June 2010

So far only hard MPI. Now extend to soft interactions with

 $\chi_{\text{tot}} = \chi_{QCD} + \chi_{\text{soft}}.$

Similar structures of eikonal functions:

$$\chi_{\text{soft}} = \frac{1}{2} A_{\text{soft}}(\vec{b}) \sigma_{\text{soft}}^{\text{inc}}$$

Simplest possible choice: $A_{\text{soft}}(\vec{b};\mu) = A_{\text{hard}}(\vec{b};\mu) = A(\vec{b};\mu)$. Then

$$\chi_{\rm tot} = rac{A(b;\mu)}{2} \left(\sigma_{\rm hard}^{
m inc} + \sigma_{
m soft}^{
m inc}
ight) \;.$$

One new parameter $\sigma_{\text{soft}}^{\text{inc}}$.

Extending into the soft region

Continuation of the differential cross section into the soft region $p_t < p_t^{\min}$ (here: p_t integral kept fixed)

Exploit knowledge of σ_{tot} in eikonal model:

$$\begin{split} \sigma_{\text{tot}} &= 2 \int d^2 \vec{b} \left(1 - e^{-\chi_{\text{tot}}(\vec{b},s)} \right) \\ &= 2 \int d^2 \vec{b} \left(1 - e^{-\frac{A(\vec{b};\mu)}{2}(\sigma_{\text{hard}}^{\text{inc}} + \sigma_{\text{soft}}^{\text{inc}})} \right) \end{split}$$

 σ_{tot} well measured. Fixes σ_{soft}^{inc} .

Energy extrapolation from Donnachie-Landshoff

- ► DL '92 [D&L, PLB296, 227 (1992)]
- DL '92 normalized at TVT
- ► DL '04 [D&L, PLB595, 393 (2004)]

Find constraints on (p_t^{\min}, μ) .

- Find constraints on (p_t^{\min}, μ) .
- Require σ^{inc}_{soft} > 0 mb, while describing σ_{tot}.

- Find constraints on (p_t^{\min}, μ) .
- Require σ^{inc}_{soft} > 0 mb, while describing σ_{tot}.
- Require elastic *t*-slope,

$$b_{\rm el}(s) = \left[\frac{\rm d}{{\rm d}t} \left(\ln \frac{{\rm d}\sigma_{\rm el}}{{\rm d}t} \right) \right]_{t=0},$$

to be correctly described

$$b_{\rm el}(s) = \int {\rm d}^2 ec b {b^2\over\sigma_{
m tot}} \left[1-{
m e}^{-\chi_{
m tot}}
ight]$$

- Find constraints on (p_t^{\min}, μ) .
- Require σ^{inc}_{soft} > 0 mb, while describing σ_{tot}.
- ▶ Require elastic *t*-slope,

$$b_{\rm el}(s) = \left[\frac{\rm d}{{\rm d}t} \left(\ln \frac{{\rm d}\sigma_{\rm el}}{{\rm d}t}\right)\right]_{t=0}$$

to be correctly described

$$b_{\rm el}(s) = \int {\rm d}^2 ec b {b^2\over\sigma_{
m tot}} \left[1-{
m e}^{-\chi_{
m tot}}
ight]$$

 Final state tune of semi-hard MPI (MRST2001)

• What to expect at 14 TeV?

- ▶ What to expect at 14 TeV?
- $\sigma_{\text{soft}}^{\text{inc}} > 0 \text{ mb. } \sigma_{\text{tot}} \text{ from}$ Regge fit

- What to expect at 14 TeV?
- $\sigma_{\text{soft}}^{\text{inc}} > 0 \text{ mb. } \sigma_{\text{tot}} \text{ from}$ Regge fit
- Require $\bar{n}_{hard} < 10$

- What to expect at 14 TeV?
- $\sigma_{\text{soft}}^{\text{inc}} > 0 \text{ mb. } \sigma_{\text{tot}} \text{ from}$ Regge fit
- Require $\bar{n}_{hard} < 10$
- Require elastic *t*-slope to be correctly described.
 Get range of possible measurements from DL '92 and predictions for b_{el}

[Khoze, Martin, Ryskin, 0710.2494] [Gotsman, Levin, Maor, 0708,1506]

Observations

- $\sigma_{\text{soft}}^{\text{inc}}$ rises artificially fast (expect ~ $s^{0.08}$).
- Forced to have energy dependent parameters (would like to have the choice, i.e. let measurements decide).
- Measurement of $b_{\rm el}$ fixes μ^2 at Tevatron:

 $\mu^2 = 0.56 \pm 0.01 \, \text{GeV}^2$

 $\sigma_{\rm eff}=(\int d^2\vec{b}A^2(b))^{-1}$ as measured by CDF in $\gamma+3j$: $\mu^2=3.0\pm0.5{\rm GeV}^2\;.$

Observations

- $\sigma_{\text{soft}}^{\text{inc}}$ rises artificially fast (expect ~ $s^{0.08}$).
- Forced to have energy dependent parameters (would like to have the choice, i.e. let measurements decide).
- Measurement of $b_{\rm el}$ fixes μ^2 at Tevatron:

 $\mu^2 = 0.56 \pm 0.01 \, GeV^2$

 $\sigma_{
m eff} = (\int d^2 \vec{b} A^2(b))^{-1}$ as measured by CDF in $\gamma + 3j$: $\mu^2 = 3.0 \pm 0.5 {
m GeV}^2$.

 \rightarrow Relax the constraint of identical overlap functions:

$$A_{\text{soft}}(b) = A(b, \mu_{\text{soft}})$$

If $\mu > \mu_{\text{soft}}$: Hot Spots

Stefan Gieseke · PLHC2010 · DESY HH 7-11 June 2010

Fix the two parameters μ_{soft} and $\sigma_{\text{soft}}^{\text{inc}}$ in

$$\chi_{\text{tot}}(\vec{b},s) = \frac{1}{2} \left(A(\vec{b};\mu)\sigma^{\text{inc}} \text{hard}(s;p_t^{\min}) + A(\vec{b};\mu_{\text{soft}})\sigma_{\text{soft}}^{\text{inc}} \right)$$

from two constraints. Require simultaneous description of σ_{tot} and b_{el} (measured/well predicted),

$$\begin{split} \sigma_{\text{tot}}(s) &\stackrel{!}{=} 2 \int d^2 \vec{b} \left(1 - e^{-\chi_{\text{tot}}(\vec{b},s)} \right) ,\\ b_{\text{el}}(s) &\stackrel{!}{=} \int d^2 \vec{b} \frac{b^2}{\sigma_{\text{tot}}} \left(1 - e^{-\chi_{\text{tot}}(\vec{b},s)} \right) \end{split}$$

٠

Tevatron parameter space

LHC parameter space

Same for LHC except for uncertainty in $b_{\rm el}$ and $\sigma_{\rm tot}$.

- So far: only indirect constraints from σ_{tot} and σ_{el} .
- ▶ Now use model in Herwig++ with $\bar{n}(\vec{b},s)$ as input for MPI.
- Remaining free parameters (p_t^{\min}, μ^2) .
- ► Look at χ^2 /dof for Tevatron Run I data in the (p_t^{\min}, μ^2) plane.

Parameter space at Tevatron

 χ² for Rick's Run1 Jet analysis for all regions

Parameter space at Tevatron

- χ² for Rick's Run1 Jet analysis for all regions
- only the transverse region

Detailed look at observables: Transverse Region

Detailed look at observables: Transverse Region

What we have so far:

- Unitarized jet cross sections
- Fulfil constaints from σ_{tot} and σ_{el} .
- Simple model with similar overlap functions.
- ► No additional (explicit) energy dependence.
- Left with freedom in parameter space.

What we have so far:

- Unitarized jet cross sections
- Fulfil constaints from σ_{tot} and σ_{el} .
- Simple model with similar overlap functions.
- ► No additional (explicit) energy dependence.
- Left with freedom in parameter space.
- \implies Look at LHC results (900 GeV).
 - ATLAS charged particles in Min Bias (→ G. Brandt yesterday [207]).
 - Already in RIVET ;-)
 - ► Three points from 'valley' $(p_t^{\min}/\text{GeV}, \mu^2/\text{GeV}^2) = (3.0, 1.0); (4.0, 1.5); (5.0, 2.0)$

Variation over the constrained parameter space

Variation over the constrained parameter space

Choice of PDF set.

Choice of PDF set.

Sensitivity to pdf at small *x* via simple model.

Sensitivity to pdf at small *x* via simple model.

Colour structure of soft events.

Colour structure of soft events.

- ▶ MPI UE/Min Bias model in Herwig++.
- Close connection to σ_{tot} and σ_{el} via unitarization.
- Exploited to constrain free parameters.
- Used Run I data on top.
- First look at LHC data within these constraints.

- Freedom in parameter space allows to adjust normalization.
- Model too simplistic for shapes?
- Treatment of remnant pdfs too naive?
- More involved overlap function? With Energy dependent parameters?
- New implementation of colour reconnection model to be tested!
- Stay tuned!

Extra slides

Stefan Gieseke · PLHC2010 · DESY HH 7-11 June 2010

Rick Field's analysis

