

Jean Wicht (KEK)

Physics at the LHC 2010 Hamburg, 7-12 June 2010

CKM-favored modes

- We have studied:
 - $B_s \rightarrow D_s \pi, D_s^* \pi, D_s \rho \text{ and } D_s^* \rho$
- With these high-statistics modes, we can measure
 - $\Upsilon(5S) \rightarrow B_s^{(*)}B_s^{(*)}$ production fractions, as already shown
 - Absolute branching fractions with reasonable accuracy (f_s is the limitation)
 - Proton colliders can't! We can give a reference for the LHC experiments to normalize their B_s branching fractions to.
 - **B**_s and **B**_s^{*} properties: masses, widths, angular distributions
 - Can be compared with B^0 and B^* : test of Heavy Quark Effective Theory (HQET), factorization, ...
- Let's have a look at $B_s \rightarrow D_s^* \rho$.

 $B_s \rightarrow D_s^* \rho$

- Decay of a pseudo-scalar to two vectors
 - longitudinal and transverse polarizations possible
- BF measurement **depends** on the polarization: different M_{bc} and ΔE signal shapes, and different reconstruction efficiency.

 B_s mass: good agreement with CDF but less precise B_s^* mass: improve on CLEO (420 pb⁻¹ at $\Upsilon(5S)$)

J. Wicht: $B_{_{\rm S}}$ physics at the $\Upsilon(5S)$ resonance

Charmless: $B_{s} \rightarrow h h$

Preliminary, EPS09; 23.6 fb⁻¹

• $B_s \rightarrow K^+K^-$ and $B^0 \rightarrow \pi^+\pi^-$ are related by SU(3)

- can probe **New Physics** by comparing CP asymmetries London et al., PRD 70, 031502 (2004)
- can measure the CKM angle γ/φ_3 using the U-spin symmetry.

Fleischer, PLB 459, 306 (1999)

J. Wicht: B_s physics at the $\Upsilon(5S)$ resonance

J. Wicht: B_s physics at the $\Upsilon(5S)$ resonance

J. Wicht: B_s physics at the $\Upsilon(5S)$ resonance

 $B_s \rightarrow J/\psi f_0(980)$

- Silver mode for LHCb to measure β_s , the CP-violating phase in the B_s mixing Stone et al., arXiv:0909.5442 (2009)
 - BF smaller than $B_s \rightarrow J/\psi \phi$ BUT $J/\psi f_0$ is a pure CP-eigenstate

- No angular analysis required

• Branching fraction expectations:

$$\frac{\mathcal{B}(B_s^0 \to J/\psi f_0) \mathcal{B}(f_0 \to \pi^+ \pi^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi) \mathcal{B}(\phi \to K^+ K^-)} \approx 0.2 \qquad \begin{array}{c} \text{Stone et al., PRD 79,} \\ 074024 (2009) \\ \end{array} \\ = 0.42 \pm 0.11 \qquad \begin{array}{c} \text{CLEO}(D_s \to f_0 e\nu), \\ \text{PRD 80, 052009 (2009)} \end{array}$$

Using CDF's $B_s \rightarrow J/\psi \phi$ measurement, we have:

$$\mathcal{B}(B^0_s \to J/\psi f_0) \mathcal{B}(f_0 \to \pi^+\pi^-) = (1.3 - 2.7)10^{-4}$$

Also

J. Wicht: B_s physics at the $\Upsilon(5S)$ resonance

J. Wicht: B_s physics at the $\Upsilon(5S)$ resonance

- In the heavy quark limit, assuming $|m_{_b}$ 2 $m_{_c}|$ \rightarrow 0, $N_{_{colors}}$ \rightarrow ∞
 - Predominantly CP-even eigenstates
 - CKM-favored: $\Gamma(B_s \rightarrow D_s^{(*)} D_s^{(*)})$ is expected to saturate $\Delta \Gamma_s^{CP}$

$$\Gamma(B_s^0 \to D_s^{(*)} D_s^{(*)}) \approx \Delta \Gamma_s^{CP} = \Gamma(CP - \text{even}) - \Gamma(CP - \text{odd}) = \frac{\Delta \Gamma_s}{\cos \phi}$$

where φ is a CP-violating phase. Assuming negligible CP-violation ($\varphi{\sim}0),$ we can derive

$$\frac{\Delta\Gamma_s}{\Gamma_s} = \frac{\Gamma_{s,L} - \Gamma_{s,H}}{\Gamma_s} = \frac{2\mathcal{B}(B_s^0 \to D_s^{(*)} D_s^{(*)})}{1 - \mathcal{B}(B_s^0 \to D_s^{(*)} D_s^{(*)})}$$

Aleksan et al., PLB 316, 567 (1993)

- Our analysis:
 - Reconstruction of $B_s \rightarrow D_s^* D_s^*$, $B_s \rightarrow D_s^* D_s$ and $B_s \rightarrow D_s D_s$ separately

– $D_s^* \rightarrow D_s \gamma$ with six D_s decays: $\phi \pi$, $K_s K$, K^*K , $\phi \rho$, $K_s K^*$, K^*K^*

- Due to **very large cross-feeds** (reconstruct three times the same event in all modes): select a maximum of one candidate per event among the three modes:
 - minimum χ^2 computed with M(D_s) and M(D_s^{*})-M(D_s)

J. Wicht: $B_{_{\rm S}}$ physics at the $\Upsilon(5S)$ resonance

J. Wicht: B_s physics at the $\Upsilon(5S)$ resonance

 B_s →J/ψφ (CDF, 5.2 fb⁻¹, FPCP 2010) $\Delta \Gamma_s / \Gamma_s = (11.5 \pm 5.4)\%$

J. Wicht: B_{s} physics at the $\Upsilon(5S)$ resonance

Summary

- Sample of 2.8 million B_s (23.6 fb⁻¹) studied
 - CKM-favored: $B_s \rightarrow D_s^* \pi^+$, $D_s^* \rho^+$ and $D_s^- \rho^+$
 - First observations, large signals seen
 - Charmless $B_s \rightarrow hh: B_s \rightarrow K^+ K^-$ observed
 - CP eigenstates:
 - $B_{_{\rm S}} \rightarrow J/\psi$ $\eta,\,J/\psi$ $\eta':$ first observation and evidence
 - No evidence of $B_s \rightarrow J/\psi f_0(980)$. Need full data sample update!
 - $B_s \rightarrow D_s^{(*)} D_s^{(*)}$ exclusively studied: $\Delta \Gamma_s / \Gamma_s$ measured.
 - Many of these final states can only be studied in the clean environment of an e^+e^- collider!
- Five times more data available! More results in the pipeline!
 - Belle has also reprocessed its data! Tracking is improved: you can even expect more than five times better.
 - We are also working on reducing the uncertainty on f_s toward 5%.

June 10. 2010

J. Wicht: $\Upsilon(5S)$ and non-BB $\Upsilon(4S)/\Upsilon(5S)$ decays

20

June 10. 2010

First observation of a B_s radiative penguin decay!

18±6 signal events $\mathcal{B}(B_s^0 \to \phi \gamma) = (57^{+18}_{-15}) \times 10^{-6}$

compatible with SM

Wicht et al. (Belle), PRL 100, 121801 (2008)

June 10. 2010

