Heavy Ion Physics with the ATLAS Detector

H. Santos

for the ATLAS Collaboration

LIP

Physics at the LHC 2010, 7–12 June, DESY, Hamburg

Heavy Ion Physics

- Systematic study of a hot, dense and strongly coupled system
- Extending our understanding of QCD by studying distinct phases of matter: hadronic vs. partonic deconfined system (Plasma of Quarks and Gluons)

 \sqrt{s} : 17 GeV@SPS 200 GeV@RHIC 5.5 TeV@LHC Colliding nuclei: Pb+Pb Au+Au Pb+Pb

ATLAS Acceptance

Full azimuthal coverage

Large acceptance and precise tracking, associated to very good Trigger/DAQ capabilities, ensure a powerful Heavy Ion Program ₃

Global Observables – I

Day-1 physics

Get insight into the initial-state energy densities which control the dynamical evolution and jet quenching

10

η

4

8

Global Observables – II

Day-1 physics

Within a few days of LHC Pb+Pb running entire classes of models may be excluded

Global Observables – III

Anisotropic spatial collective motion leads to an elliptical asymmetry in the momentum space

$$\mathbf{E}\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi}\frac{d^{2}N}{dp_{T}^{2}dy}\left(1+2\sum_{n=1}^{\infty}v_{n}(p_{T},y)\cos[n(\phi-\Phi_{RP})]\right)$$

elliptic flow: v₂(p_T) = $\langle cos[2(\phi - \Phi_{RP})] \rangle$

Lee-Yang Zeros method less sensitive to non-flow effects 6

Jet Production in Pb+Pb Collisions

Hard processes probe the very earliest phase of the collisions. One of the most hot topics of the LHC Heavy Ion Program will be the jet quenching measurements.

Neutral hadrons suppressed by a factor of 5

Recoil jets suppressed in central Au+Au collisions

Jet Reconstruction – I

Challenging in the heavy ion environment, but the large acceptance of the ATLAS calorimeters allows full jet reconstruction

PYTHIA di-jets embedded in HIJING central event

without quenching

limit Q² < 100 GeV² (no HIJING jets)

Underlying event subtraction by removing the E_T average from the seeded jet signal

Jet Reconstruction – II

Reconstructed spectrum not corrected for efficiency and energy resolution

Dashed line represents the absolute fake jet rate from pure HIJING events prior to background jet rejection

Jet Fragmentation

Good agreement between reco and input spectra

Photon Identification

Direct Photons Identification Performance

Above 60 GeV the neutral hadron spectrum falls below direct γ For 100 GeV photons: S/B ~ 1 (R_{AA} = 1, worst case); S/B ~ 5 (R_{AA} = 1/5, as observed at RHIC) Rates estimated: 200k at $E_T > 30$ GeV, 10 k at $E_T > 70$ GeV (if $R_{AA} = 1/5$) and for one month of LHC run of 0.5 nb⁻¹ and $\sqrt{s}=5.5$ TeV.

Quarkonia Studies

Quarkonia suppression is predicted by lattice QCD calculations

State	χ _c	ψ'	J/ψ	Y'	χ_{b}	Y
T _{dis}	$\leq T_{c}$	$\leq T_{c}$	1.2T _c	1.2T _c	1.3T _c	2T _c

J/ψ anomalous suppression by Debye colour screening (Matsui and Satz, 1986)

→ One of the most striking signatures for the QGP formation

$Y \rightarrow \mu^+ \mu^-$ Reconstruction

Estimated rates for one month LHC run of 0.5 nb⁻¹ and \sqrt{s} =5.5 TeV

	η < 1	η < 1.5	η < 2.5
Acceptance	6.0%	10.8%	23.2%
x efficiency	3.6%	6.8%	17.2%
Mass resolution	147 MeV	162 MeV	182 MeV
Rate/month	9100	16400	35200
	5500	10300	26100

Z measurements

Mass resolution weakly affected by the high-multiplicity of the heavy ion environment (within 1σ difference)

Acceptance x	60%
Efficiency	
Mass Resolution	2.2 GeV
Pato/voar	8000
Nate/year	0000

Estimated rate for one month LHC run of 0.5 nb⁻¹ and using NLO pQCD rapidity distributions

Good prospects for Z–Jet correlations studies

Heavy Ions Run in 2010

Parameter	Nominal	2010
Beam energy/nucleon [TeV]	2.76	1.38
Peak luminosity [cm ⁻² s ⁻¹]	10 ²⁷	10 ²⁵ — 2x10 ²⁵
Interaction rate	7.7 kHz	80 — 160 Hz
# bunches	592	62
Bunch spacing [ns]	100	1350

Trigger plans for 2010

• For Pb+Pb collisions, at nominal luminosity, the expected interaction rate is 7.7 kHz, a factor of 10 smaller than LVL1 bandwith (75 kHz)

✓ No rejection at LVL1; HLT in transparent mode

4 trigger signatures: Minbias, Jet, Muon

UPC (Ultra-Peripheral Collisions; not covered in this talk) planned

Summary

High potential of the ATLAS experiment to carry on the Heavy Ion Program of the LHC

Excellent capabilities to explore many A+A observables:

- Bulk variables as $dN_{ch}/d\eta$, $dE_T/d\eta$ and $v_2(p_T)$
- Inclusive jets and direct photons
- di–jet (γ–jet and Z–jet) correlations
- Quarkonia states

p+p data will be used as a reference for Pb+Pb

Not covered in this talk (but promising):

- Heavy flavour jets
- Zero Degree Calorimeters in the HI program
 - ✓ Ultra–Peripheral Collisions
 - ✓ Low-x physics

Tracking

$J/\psi \rightarrow \mu^+\mu^-$ Reconstruction

Important study to establish connection with SPS and RHIC results

A low p_T trigger, based on φ information from μ -trigger chambers, is under study (worse bkg, better rate and significance)

Estimated rates for one month LHC run of 0.5 nb⁻¹ and \sqrt{s} =5.5 TeV

	p ₇ ^μ > 3 GeV	p _τ ^μ > 1.5 GeV
Acceptance x	0.075%	0.785%
efficiency	0.051%	0.301%
Mass resol.	69 MeV	81 MeV
S/√S+B	74	158
	66	111
Rate/month	19000	192000
	13000	74000

Jet Reconstruction Performance

reconstruction efficiency, E_T and ϕ -position resolutions for 3 multiplicity ranges

Jet Reconstruction Performance

Anti-k_T algorithm under study; promising.

Jet Fakes Rejection

γ -jet Correlations

$\Delta \phi$ correlations for $\gamma\text{--jet}$ pairs

Two different fake rejection cuts:

Open symbols – loose

Close symbols – tight

Jet Rates in 2010

Assuming:

- 1/20 nominal luminosity
 (25 μb⁻¹/year)
- 100% trigger efficiency

~4000 jets @ 100 GeV/c ~200 jets @ 200 GeV/c

