Response of Single Isolated Hadrons in the ATLAS Calorimeters with 900 GeV Data

Pier-Olivier DeViveiros University of Toronto

On behalf of The ATLAS Collaboration

PLHC 2010 Hamburg, Germany

Why measure E/p?

- The uncertainty on the Jet Energy Scale is one of the leading sources of uncertainty in many analyses
- ATLAS has excellent tracking resolution/scale
 - We can measure the momentum of charged particles with an accuracy on the absolute scale at the level of < 1% in the range under study
- We can combine tracking and calorimeter measurements to obtain the calorimeter response of the charged hadrons comprised in jets
 - This allows us to set an uncertainty on our calibration!

The ATLAS Calorimeters

Polar Angle: Θ Pseudo-Rapidity: $\eta = -\ln \tan(\Theta/2)$ Absolute Coverage $|\eta| < 4.9$

Expected performance in the Barrel & Endcap For hadrons: $\sigma_{\rm F}$ / E = 50% / $\sqrt{\rm E} \oplus 3\%$

ATLAS Collaboration

All calorimeters use sampling technology with different materials

Component	Longitudinal Layers	# Channels (Sample) (Granularity)	X _o Lengths
()	J	# 5	

EM Barrel	3 (+1)	109k (0.025x0.025)	~ 2
EM Endcap	3	64k (0.025x0.025)	~ 2
Tile Barrel	3	10k (0.1x0.1)	~ 9
Hadronic Endcap	4	5k (0.1x0.1)	~ 10

Reminder: ATLAS Calorimeters are non-compensating! 3

June 8th 2010

Tracking in ATLAS

ATLAS Collaboration

June 8th 2010

Central Layers Endcap Layers

Pixel: 3 Pixel Layers

2 x 3 Pixel Disks

SCT:

(Silicon Microstrips)

4 Silicon Strip Layers

2 x 9 Disks (SCT)

TRT:

(Transition Radiation Tracker)
73 Straw Planes

160 Straw Planes

Solenoidal Magnetic Field of **2 T**

Event Sample

- Events collected during the December 2009 LHC commissioning run at 900 GeV
 - Approximately 360,000 events used after selection
 - Events required to have at least 1 hit from either side of the Minimum Bias Trigger Scintillators
 - A vertex with at least 2 associated tracks is required

How do we measure E?

- Topological Clustering
 - We group calorimeter energy deposits into 3D clusters, following a noise suppression scheme

This allows us to make full use of the granularity of the

ATLAS detector

Noise Suppression Procedure:

Look for a cluster seed with a signal significance $|E| > 4 \sigma_{Nolse}$ Include all neighboring cells with a signal significance $|E| > 2 \sigma_{Nolse}$ Include all nearest neighbors

with a signal significance $|E| > 0 \sigma_{Nolse}$

Not a

cluster!

ATLAS Collaboration

Track Selection

- We require good isolated tracks of $p_{T} > 500 \text{ MeV}$
- Good: More than 1 hit in the Pixel detector and more than 6 hits in the Silicon strips, matched to the primary vertex
- Isolated: To reduce backgrounds, we require no nearby track-like objects within a ∆R of 0.4
- ΔR is defined as:

$$(\Delta R)^2 = (\eta_1 - \eta_2)^2 + (\phi_1 - \phi_2)^2$$

What range of track momenta is useful for studying the Jet Energy Scale?

- From Monte Carlo studies of Jet fragmentation, fraction of energy comprised in particles for a 100 GeV jet:
 - \sim **1**% for 0 < p < 0.35 GeV
 - ~**5**% for 0.35 < p < 1 GeV
 - ~10% for 1 < p < 3 GeV
 - ~10% for 3 < p < 5 GeV
 - ~20% for 5 < p < 10 GeV
- We only have enough statistics to reach up to p of 10 GeV (accounts for ~ 45% of a jet's energy!)
- We need another form of input (testbeam!)

Energy to Track Association

 To reduce backgrounds, only include calorimeter energy from layers where the cluster centroid is within R of the extrapolated track

Background Contamination

- Background contamination (extra Energy associated to a track) comes from:
 - Neutral particles: No tracks!
 - Charged particles: Unlikely since we cut on anything with a track-like signature!
- We can estimate the contamination from Monte Carlo, or using a Data-Driven method
 - Both methods show good agreement and are used as a cross-check

Data-Driven Technique

- Look for late showering hadrons (most of the energy deposited in the hadronic calorimeter)
- Require that the deposits in the EM calorimeter be compatible with those of a minimum ionizing particle
- Sum up the energy in the EM Calorimeter around the track which does not come from the minimum ionizing signature, using the original selection criteria
- This is a slight underestimate, as contributions in the hadronic calorimeter are not used
- However, good agreement is found with Monte Carlo:

$$Contamination_{} = (2.5 \pm 1.5)\%$$

ATLAS Collaboration

Measurement of the E/p Distribution

Region under study: $0.0 < \eta < 0.6$ 1.2 GeV

Good agreement with Monte Carlo!

ATLAS Monte Carlo for this study:
Pythia Event Generator
Detector response simulation using
full detector description in GEANT 4

Measurement of the E/p Distribution

E/p measurement of 0 means **no calorimeter energy** assigned to a good isolated track...

Due to:

Noise suppression: No cell seed found for clusters

Particle interacted hadronically before the calorimeter ('Dead' Material)

June 8th 2010 ATLAS Collaboration 12

Tracks with no Associated Energy

- Study cases when the calorimeter energy deposition associated to a track is zero
 - Provides an experimental handle on the amount of dead material in front of the calorimeter
- Probability of 'Zero energy' measurements is defined as the probability that a measurement is compatible with noise:

$$-P(E=0) = N(E/p < \sigma)/N_{tot}$$

 σ is approximated by looking at the width in the negative energy tail

Probability that no Energy is Associated to an Isolated Track

P (E=0) depends on the amount of material in front of the calorimeter

P (E=0) depends on the particle momentum (larger cross-section for hadronic interactions at low momentum)

Good agreement with Monte Carlo simulations!

Mean E/p: η-dependence

Overall agreement between Data and MC within 3% Around $\eta \sim 1.7$, agreement at the 10% level

June 8th 2010

ATLAS Collaboration

15

Mean E/p: Momentum dependence

 $|\eta| < 2.3$ (Full pseudo-rapidity range of the study)

Overall Agreement at the 5% level

Outlook

- E/p has been measured for |η| < 2.3 and
 500 MeV
- The calorimeter response to isolated hadrons shows agreement between Data and MC at the 5% level for most of the calorimeter
- This measurement is an important input to the estimation of the jet calibration uncertainty!
- Dead material and cluster threshold effects are well understood and in general well modeled by the simulation!
- This measurement is being repeated with 7 TeV data and new results will be shown soon!!

Thanks for your time!

Back-up

Tracking Variables

