Performance of jet reconstruction and calibration in first ATLAS data at centre-of-mass energies of 7 TeV and 900 GeV

> Rolf Seuster (MPP Muenchen) on behalf of the ATLAS Collaboration Physics at the LHC, DESY, June 2010

- Introduction
- Jet Reconstruction
- Jet Calibration
- Conclusion

Atlas Calorimeter systems

Data sample, luminosity

- data set recorded by ATLAS as of May 31st
 - 14.85 nb⁻¹ at 7 TeV 865×10^6 events
 - peak luminosity $21 \times 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$
 - presented data set: taken in April 2010 after preselection 0.3 nb⁻¹ at 7 TeV 14.4×10^6 events
 - for Jet Calibration: 0.3×10^6 events at 900 GeV taken in 2009: ATLAS-CONF-2010-016

R. Seuster(MPP) JetReconstruction and Jet Calibration in ATLAS

Event Preselection and Jet Selection

- run and event selection:
 - stable beam flag from accelerator
 - calorimeter fully operational with nominal performance
 - primary vertex from center of ATLAS detector
 - event timing consistent with collisions
 - effectively no bkg due to cosmic ray shower and beam related bkg left
- veto jets with:
 - noisy cells in endcap region (largest effect)
 - out of time deposits
 - jets with large energy fractions from cells with bad signal quality
 - see talk by A.Yurkewicz, ATL-COM-PHYS-2010-247

R. Seuster(MPP)

JetReconstruction and Jet Calibration in ATLAS

Jet Algorithms in ATLAS

- FastJet $k_{T}(p=+1)$, Cambridge/Aachen(p=0) and anti- $k_{T}(p=-1)$
 - fast jet finder, theoretically clean (IRC safe)
 - iterative procedure to combine proto-jets
 - search for min(d_{ii}, d_{ii}). if d_{ii} recombine (i,j) or if d_{ii} : jet i is final

$$d_{ij} = \min(p_{T,i}^{2p}, p_{T,j}^{2p}) \cdot \Delta_{ij}^{2} / R^{2} \qquad d_{ii} = p_{T,i}^{2p}$$

$$\Delta_{ij} = (\phi_{i} - \phi_{j})^{2} + (y_{i} - y_{j})^{2}$$

 $p_{T,i}, \phi_i, y_i$ transverse momentum, azimuth and rapidity

- in Atlas anti- k_{τ} with radii of R=0.6, 0.4 commonly used
- AtlasCone
 - iterative cone finder w/o ratcheting, split/merge, not IR safe
 - used during commissioning, slowly being retired
- SISCone
 - <u>Seedless IR Safe Cone, split/merge</u>
- other, less common algorithms, some historic

R. Seuster(MPP) JetReconstruction and Jet Calibration in ATLAS

Input to Jet Algorithms: topological Clusters

R. Seuster(MPP)

JetReconstruction and Jet Calibration in ATLAS

Inputs to Jet Algorithms: topological Clusters, cont'd

- Transition regions between different calorimeter systems clearly visible |n|~ 1.5 and |n| ~ 3.2
- also available as input (not shown): Towers, fixed grid in eta/phi in 2d
- Noise suppressed Towers:
 - only cells used in topological clusters put onto fixed η - ϕ grid
 - further noise suppression
 - possible advantage for pileup

• However

agreement data/MC slightly worse

good agreement overall:
 ~ 2%(5%) in barrel (endcap)

R. Seuster(MPP)

JetReconstruction and Jet Calibration in ATLAS

Matching Tracks to Jets

- as cross check:
 - match tracks to jets with ∆R<0.6 (=jet radius) p_{Track}>500 MeV track consistent with IP
 - restrict jet to $|\eta| < 1.9$ due to tracking acceptance
- nice correspondence of tracks to constituents (topoclusters) !
 - diluted due to neutrals, more than one particle per cluster, ...

Jet Calibration

- non-compensating calorimeters in ATLAS require software calibration of energy deposits of pions to equalize response to electrons and pions, referred to as Jet Calibration
- currently 4 different calibration schemes available:
 - <u>EM+JES</u>, jet on electromagnetic scale plus simple correction factor for jet energy scale
 - currently simple correction factor in eta/pt derived from MC, could be derived in-situ from gamma-jet/di-jet balance
 - <u>G</u>lobal <u>S</u>equential
 - <u>G</u>lobal <u>Cell Weighting</u>
 - Local <u>Cluster</u> <u>W</u>eighting
- GCW and LCW rely on good Geant 4 detector description ! GS in parts, too
- In the following slides, last 3 methods are introduced, and data / MC comparisons of observables on which the calibration schemes depend are shown

Global Sequential Jet Calibration

- applied after EM+JES, attempt to improve resolution based on jet properties:
 - energy per layer
 - jet width (not shown here)
- 900 GeV: mostly low p_T jets: typically most energy deposited in second layer of EM calorimeter in barrel and in endcap regions
- good agreement at 900GeV also for other layers in calorimeter

PLHC2010

slide 10

JetReconstruction and Jet Calibration in ATLAS

Global Cell Weight Jet Calibration

- Global fit to minimize jet energy fluctuations
- cell weights depend on cell densities bins in eta
- good agreement between MC and data for cell energy density distrib. However, MC predicts more events with higher energy density
- more studies needed to understand this effect
- difference could be from
 - MC particle spectra
 - hadronic shower modelling, etc.
 - e.g. compare jets from tracks

PLHC2010

slide 11

Local Cluster Weighting for Jet Calibration

- inputs to jet algorithm calibrated first, then simple jet calibration
- most elaborate, calibrate local energy deposits in calorimeter based on simulation of charged, neutral pions
- attempt to separate detector effects (non-compensating calorimeter, dead material, ...) and physics effects
- <u>calibrated</u> clusters vs eta
- detector structure visible
 e.g. |η|~3 transition region
 endcap and forward detectors

R. Seuster(MPP) Jet

JetReconstruction and Jet Calibration in ATLAS

PLHC2010

slide 12

Details about Local Cluster Weighting

- **Topological clusters:** 3 steps during weighting:
- classify energy deposits as electromagnetic or hadronic and weight them (W, blue)
- correct for energy deposits in calorimeter, but not collected in this or other clusters (OOC, green triangles)
- correct for energy deposits outside of active calo (DM, yellow points)
- all weights derived from detector simulation
- largest effect from DM in transition regions $|\eta| \sim 1.5$ and $|\eta| \sim 3.2$ R. Seuster(MPP)

PLHC2010

slide 13

Performance of different Jet Calibration schemes

- as expected 'simple' EM+JES performs worst at high pT
- GS, GCW, LCW show very similar performance over almost all p_τ although corrections depend on different input

Summary and Conclusion

Run Number: 152441, Event Number: 4918171

Date: 2010-04-06 10:26:47 CEST

- Jet Reconstruction in ATLAS in good shape:

 impressive agreement between data / MC
 few discrepancies need further studies, not surprising after just few weeks of data taking !
- Jet Calibration in ATLAS also in good shape
 - extensive test beam analyses and continous improvement of Geant4 simulation pay off !
 - 4 different jet calibrations available despite different input, 3 of which with comparable, very good performance !
 - updated results with 7 TeV for ICHEP

BACKUP

R. Seuster(MPP) JetReconstruction and Jet Calibration in ATLAS PLHC2010 slide 16

Performance of different calibration schemes: g vs q jets

 GS calibration only calibration taking jet properties (jet width) into account, helps in separating gluon from quark jets

Jet Quality cuts: f_{HEC} and n90

- f_{HEC}: fraction of energy of jet from HEC
- n90: minimum number of cells which have more than 90% of E_jet

Jet Shapes for some Algorithms

R. Seuster(MPP)

JetReconstruction and Jet Calibration in ATLAS

Matching Tracks to Jets

noise suppressed towers

JetReconstruction and Jet Calibration in ATLAS

Jet Energies after weighting

• Correction factor in agreeement with expectation from e/π , from non-compensating calorimeter

R. Seuster(MPP) JetReconstruction and Jet Calibration in ATLAS PLHC2010 slide 21