

Commissioning of Leptons and Prospects for Searches of Leptoquarks, W' and Z' in CMS

PHYSICS AT LHC 2010 7 - 12 June 2010 DESY, Hamburg

Kerstin Hoepfner RWTH Aachen, III. Phys. Inst. A

On behalf of the CMS Collaboration

Beyond the Standard Model? → Search for W', Z' or leptoquarks

Different signals, largely based on very high p_T leptons (electrons, muons) with $p_T > 200$ GeV

Resonance $Z' \rightarrow M$

Peak in invariant mass spectrum M_{ee} or $M_{\mu\mu}$

 $W' \rightarrow \ell_V$

Excess in electron E_T or muon p_T spectrum

Excess in lq invariant mass and di-lepton or di-jet spectrum

K.Hoepfner, RWTH Aachen

CMS: Commissioning of Leptons and Prospects for LQ, Z' and W'

The CMS Detector

For signals in this talk:

- ECAL + Tracker for electrons
- Muon system +Tracker for muons

Pixels
Tracker
ECAL
HCAL
MUON Dets.
Superconducting Solenoid

Total weight : 12500 t Overall diameter : 15 m Overall length : 21.6 m Magnetic field : 4 Tesla

http://cms.cern.ch

YE-2

YE-3

HF-

YE-1

K.Hoepfner, RWTH Aachen

CMS: Commissioning of Leptons and Prospects for LQ, Z' and W'

YB-2

YB-1

YBO

Goal: Reconstruction of

- isolated tracks with $\varepsilon > 0.95$
- high p_T tracks within jets with $\varepsilon > 0.9$

Requires $\underline{\Delta p}_{p} \approx \left(\frac{pitch}{100\,\mu m}\right) \left(\frac{3.8T}{B}\right)^{2} \left(\frac{1.2\,m}{L}\right) \left(\frac{p}{TeV}\right)$ $\approx 1.2\% @ 100 GeV$

CMS Muon System

Muon Barrel 0 < |η| < 1.2

- 5 barrel wheels, iron return yoke for the solenoid magnet
- Almost no B-field at chamber positions
- 250 Drift Tube (DT) Chambers
- 480 Resistive Plate Chambers (RPC)

Forward Muon 0.9 < $|\eta|$ < 2.4

- Arranged in 2 x 3 disks
- 4 muon stations in 2/3 rings
- Inhomogenous field with B<1.2 T
- 250 Cathode Strip Chambers (CSC)
- 483 Resistive Plate Chambers (RPC)

Momentum resolution up to ~100 GeV limited by multiple scattering in the iron, $\Delta p/p$ ~10%@100 GeV

Muon performance see talk by Luca SCODELLARO

Combination with high resolution silicon tracker \rightarrow few %

For $p_u \sim O(TeV)$, muon system resolution is dominating $\rightarrow \Delta p/p \sim 10\%$

CMS Electromagnetic Calorimeter

Fully active ECAL, made of $PbWO_4$ crystals (CMS development) Arranged in 36 barrel supermodules (61200 crystals, 67.4t) and 4 end-cap D's (14648 crystals, 22.9t)

K.Hoepfner, RWTH Aachen

CMS: Commissioning of Leptons and Prospects for LQ, Z' and W'

PbWO₄-crystal

Commissioning with Cosmic Muons and Beam Splash Events

Vertical Cosmic Muons (CRAFT)

In total ~350 million triggers Used for studies of

- Reconstruction (tracker, muon, global)
- Trigger performance and efficiency
- Alignment of tracker and muon system and global alignment

Horizontal Beam Splash Events

- For alignment of muon endcaps with respect to each other (cannot be done with cosmics since rate of horizontal cosmics is too low)
- Large energy deposition in calorimeters useful to study performance (although very limited statistics)

Impact of Alignment

- Big progress in alignment with tracks using cosmic ray tracks
- Complementary to hardware (laser) align.
- Improves the CMS start-up conditions. Now (after cosmics analysis) better than earlier estimates for 10 TeV MC samples

K.Hoepfner, RWTH Aachen

 $Z' \rightarrow \mu\mu$ sensitive to

tracker – muon alignment

Perfect alignment

Misaligned tracker

(Drell-Yan only)

700

600

Heavy Vector Bosons

- Some theories predict heavy siblings of SM Z and W \rightarrow Z' and W'
- For experimental search, assume similar decays as for Standard Model (plus decay into top quarks)
 Signatures: Z' → ℓ ℓ, Z' → qq and W' → q ν, W' → ℓ ν

model (FNAL), 900 GeV for RS gravitons

 $W \rightarrow e v, \mu v$

• Results are sensitive to alignment (especially muon channel)

Can be found/excluded already with $\sim 100 \text{ pb}^{-1}$ luminosity at LHC c.o.m=7 TeV. Key searches for new physics with early data.

K.Hoepfner, RWTH Aachen

CMS: Commissioning of Leptons and Prospects for LQ, Z' and W'

$Z' \rightarrow \ell^+ \ell^-$ with $\ell = e, \mu$

Search for new, narrow resonances in di-lepton spectrum with $M_{\mu} > 800 \text{ GeV/c}^2$

Full DY spectrum, Z-peak region provides large statistics of l^+l^- pairs \rightarrow extrapolate to higher p_T

Develop strategies for high energy electron (isolation, selections cuts) and muon (reconstructors) pairs. These lepton selections are also used for W' and leptoquark searches

Cluster: energy in

5x5 matrix

How to Select High p_T Electrons

- Standard electron ID: single electron trigger.
 Form clusters of EM energy → combine with pixel hits
 → search for tracker hits (min 5 hits/track)
- 2. $E_T > 25$ (50) GeV, $|\eta| < 2.5$
- 3. Matching in η , ϕ with a tracker track
- 4. Deposits most of its energy in ECAL, very little in HCAL
- 5. Shower shape (e⁻ shower more narrow than jets)
- 6. Calorimeter isolation (within a cone of ΔR <0.3) to reject jets

7. Tracker isolation

$Z' \rightarrow e^+e^-$: Efficiencies & Background

- Study di-electron mass spectrum from Z-peak to high masses
- Almost no SM background for M_{ee} > 600 GeV

With E_T >50 GeV, 100 pb⁻¹ Both e pass high p_T selection 501 (pseudo) data 54.1+4.3(stat)+8.5(sys) background events

- Di-electron background from eµ-method
- Jet background with fake rate method 4.5 events with est. 50% sys. error
- Electron efficiency from data with "tag and probe" 93.9% (Barrel), 94.3% (EC)
 Eff. scale factor for high mass evolution ±0.1/0.2(stat) ±1.7/3.8%(sys) Barrel/EC
- Check linearity of ECAL calibration (Testbeams ~300 GeV)
 - Method: compare hottest crystal in 5x5 matrix to surrounding 24 crystals
 - Achieved resolution with assumed 100 pb⁻¹ (4-9)% in EC, (13-16)% in Barrel

Sensitivity for $Z' \rightarrow e^+ e^-$

Reach scaled from c.o.m.= 10 TeV to 7 TeV for different SSM Z' masses

Integrated luminosity for 5σ discovery and exclusion, in a given model and fixed resonance mass

Starts to become interesting with 100 pb⁻¹ of 7 TeV data.

Lumi of 500...1000 pb⁻¹ expected after 2010/11 data taking at 7 TeV

Systematic uncertainties included:

- 4% uncertainty on selection efficiency in resonance mass region (T&P)
- Impact on invar. mass when extrapolating DY background to resonance region: approximated by changing DY by 50%
- Additional global uncertainty of 10% incl. K-factor and PDF, affecting both signal and background

- Study di-muon mass spectrum from Z-peak to high masses
- High mass region almost free of SM events but mis-reconstruction can yield • additional background \rightarrow alignment needs to be understood
- Overall muon efficiency (from MC tag-and-probe) • at the Z-peak = $(97.6 \pm 0.6)\%$ Simulation shows no dependence on p_T within 1%
- Require opposite charges • charge mis-assignment measured with cosmics to be <0.5%@500 GeV and <1.5%@1TeV

Developed method to combine electron and muon channel based on likelihoods

K.Hoepfner, RWTH Aachen

data

How to Select High p_T Muons

- Single muon trigger p_T>9 GeV
 15 GeV for higher peak luminosity
- 2. Calorimetric energy ~ MIP. $|\eta|$ < 2.1
- 3. Highly redundant muon system. Reconstruction of "stand-alone" tracks, matching and global fit with tracker hits (different reconstruction algorithms, dedicated ones for TeV muons to treat showering)
- 4. Tracker quality cuts tracker >10 hits, $\chi^2 / N_{dof} <10$, p_T (tracker) > 60 GeV
- 5. Isolated track to suppress non-promt muons: $\Sigma p_T < 10$ GeV in a $\Delta R < 0.3$ cone around muon

Suppress contamination of cosmics with timing, impact parameter, acollinearity

Many reconstruction studies done with 350 mill. cosmic triggers and pp-like reco

Selection optimized using Monte-Carlo and IDEAL detector geometry

 $W \rightarrow \cancel{} + v$ (ℓ=e, μ)

- Rather background free for p_T>200 GeV if leptons are well reconstructed
- Electron channel: dedicated selections of isolated high p_T electrons (see Z') provides good S/B ratio
- Muon channel: similar kinematic selections as for electrons BUT muon misreconstruction creates additional background
- Main background: SM W-boson
 - Boosted W \rightarrow rejected by the jet veto
 - Off-shell W \rightarrow irreducible
 - W with mis-reconstructed leptons (mainly muon channel)

Needs:

- Good electron ID and E_T
- Muon ID and correct p_T
- Reasonable jet energy scale for jet veto
- MET if strategy with MET

W' Analysis Strategy

- Uses similar selection criteria for high p_T leptons as Z' search. Not a clean peak, needs also reliable E_T^{miss}
- Potentially larger impact of alignment since no invariant mass but just excess in high p_T lepton spectrum

Possible strategies (tested with MC)

- 1. Without E_T^{miss} , veto jets with p_T >100 GeV opposite to the lepton
- 2. With E_T^{miss} and kinematic selections on ratio E_T / E_T^{miss} and angle (E_T , MET)
- 3. MHT < 200 GeV instead of E_T^{miss}

E_T^{miss} performance in data is good. Probably can work with strategy 2

Event numbers for backgrounds and signal W' $\rightarrow lv$, 100 pb⁻¹, IDEAL cond. 10 TeV 7 TeV

Sensitivity W' \rightarrow e v

Our sensitivity studies uses CLs method

- Discovery 1-CL_b < 5 (3) σ
- Exclusion $CL_s < 2 \sigma$

Systematic uncertainties included in W' \rightarrow e v Tested some worst case scenarios. No parameter prevents discovery or improved exclusion limit

Uncertainty	Expected	Worst case tested in MC
ECAL calibration	1.5% Barrel, 4% EC	
Jet energy scale	7%	30%
Cross section	10%	20%, QCD 50%
Lumi	10%	30%

Extended reach when combining electron and muon channel.

Needed luminosity for discovery of $W' \rightarrow e_V$ using strategy 2 (with missing E_T and kinematic selections)

K.Hoepfner, RWTH Aachen

CMS: Commissioning of Leptons and Prospects for LQ, Z' and W'

Leptoquarks \rightarrow leptons + jets

- Particles that carry both color and lepton flavour, allow transitions *ℓ* ↔ q
- LQ produced in pairs
- 1. generation: electrons + jets, e v + jets
 2. generation: muons + jets, μ v + jets
- Striking signature with
 - 2 high p_T leptons and
 - 2 high p_T jets

To clean jets from electrons, use (loose) high p_T electron selections

Leptons are isolated and of high p_T Selection steps for high p_T leptons like for Z' and W'

K.Hoepfner, RWTH Aachen

CMS: Commissioning of Leptons and Prospects for LQ, Z' and W'

Analysis Strategy

- Trigger and high p_T lepton selections similar to vector boson analyses
- 2. At least 2 jets, with $p_T > 50 \text{ GeV}$, $|\eta| < 3$
- 3. $M_{\mu} > 100 \text{ GeV}$ (to remove Z/ γ +jets)
- 4. Scalar sum S_T of the p_T of the 2 leading leptons and 2 leading jets (developed by D0), $S_T > f(M_{LQ})$
- 5. Two ej-pairs combined such that ΔM_{ej} is minimal

Main backgrounds:

- QCD and W+jets removed by selection
- ttbar+jets, data driven method
- Z/ γ +jets, get control sample by applying selection but reverse M $_{\ell\ell}$ step. Compare to Monte-Carlo

Example: first generation LQ

Invariant mass $\rm M_{lq}$ for 10 TeV, 100 pb-1

Clear signal after all selections

for $100 \, pb^{-1}, 10TeV$

 $N_{evt}^{signal} = 39 \pm 0.15 \qquad \varepsilon_{abs} = 0.520 \pm 0.002$ $N_{evt}^{bkgr} = 1.5 \pm 0.3 \qquad \varepsilon_{abs} = (3.5 \pm 0.5)10^{-5}$

Sensitivity for Leptoquarks

Systematic uncertainties:

- Luminosity 10%
- Signal efficiency 15%, dominated by jet energy scale
- Number of background events 30%, dominated by jet energy scale

- After 20 years of construction, CMS has began taking collision data
- For new physics, such as Z', W' and LQ, at least 100 pb⁻¹ @7 TeV are needed. Signals largely based on high p_T leptons
- First phase: commissioning with cosmics and beam splash events. Helped understanding alignment and study detector performance
- Second phase, ongoing
 - Study Standard Model, background to our searches
 - Commissioning of high p_T leptons
- CMS new physics reach with 100 pb⁻¹ will be competitive to existing FNAL results
 - Sensitive to W' of >1 TeV mass
 - Start to look for Z' and RS
 - LQ with masses 250-500 GeV

Is there anything beyond the Standard Model?