

Charged particle multiplicities in inelastic *p*-*p* interactions with ATLAS featuring the ATLAS Minimum Bias Tune 1

Gerhard Brandt On behalf of the ATLAS Collaboration

Results from ATLAS-CONF-2010-024 ATLAS-CONF-2010-031 Phys Lett B 688, 2010, Issue 1, 21-42

PHYSICS AT LHC 2010 7 - 12 June 2010 DESY, Hamburg

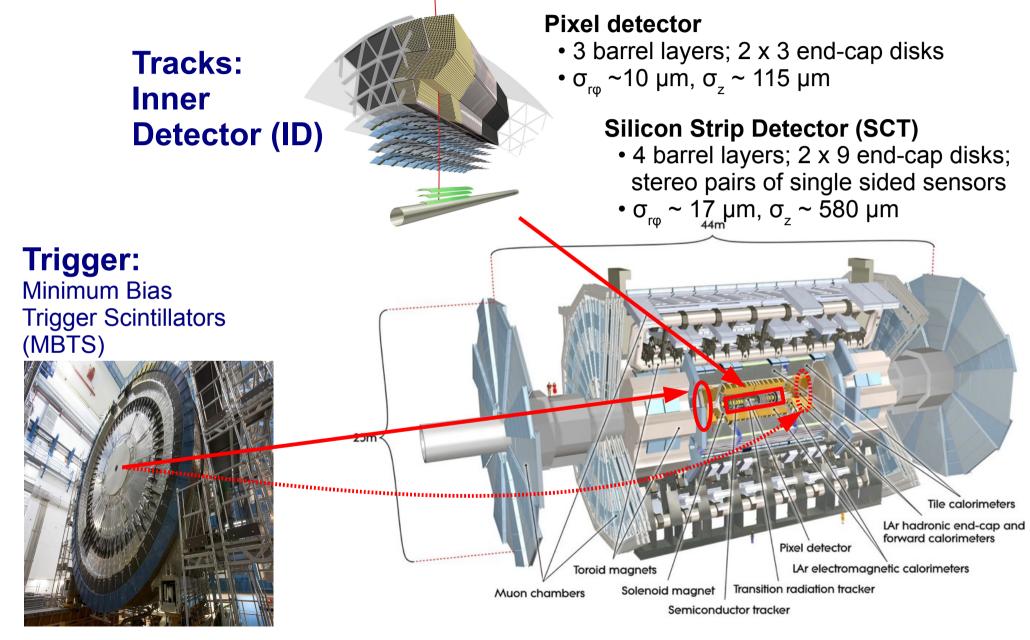
Measure charged particle multiplicity distributions from inelastic events

 $\frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ch}}{\mathrm{d}\eta}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{\mathrm{d}^2 N_{\rm ch}}{\mathrm{d}\eta \mathrm{d}p_{\rm T}}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ev}}{\mathrm{d}n_{\rm ch}} \quad \text{and} \quad \langle p_{\rm T} \rangle \, \mathrm{vs.} \, n_{\rm ch},$

Motivation

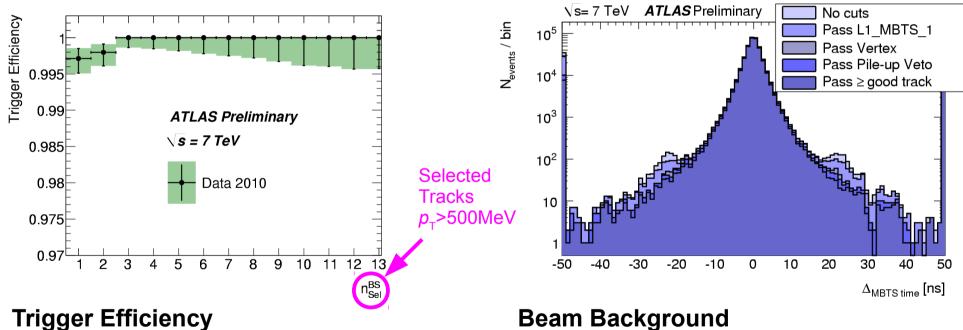
- Understand the detector and track reconstruction
- Understand soft QCD background present in events with high- p_{T} reactions
 - Constrain models describing minimum bias physics
 - Compare results to MC generators: PYTHIA 6, PYTHIA 8, PHOJET with different parameter sets (tunes)

The ATLAS Way


• Constrain measurement to experimentally and theoretically well controlled region

$|\eta| < 2.5, \ p_{\rm T} > 500 \,{\rm MeV}, \ n_{\rm ch} \ge 1$

- Avoid using information from Monte Carlo (no "zero bin")
- Derive efficiency corrections from data where possible
- No subtraction of single-diffractive component (no "NSD" measurement)



Subsystems most relevant for measuring inelastic minimum bias events with charged tracks

G. Brandt - PLHC 2010

- Require stable beams
- Fully operational Inner Detector, trigger and solenoid B-field
- Require 1 or more counter in the MBTS from either side above threshold (L1_MBTS_1) - avoid bias on event topology
- Select ~455k events at \sqrt{s} =900 GeV ~400k events at \sqrt{s} =7 TeV

- Defined by comparing L1_MBTS 1 to high-level SW trigger based on tracks
- Calculated in final event selection
- > 99.5% for any track multiplicity

Beam Background

- Estimated by looking at time difference between MBTS counters on both sides
- Compare collisions / single beam
- Very small: < 10⁻⁴ contribution

ATLAS Vertex Selection and Efficiency

ATLASPreliminary

8

9

10

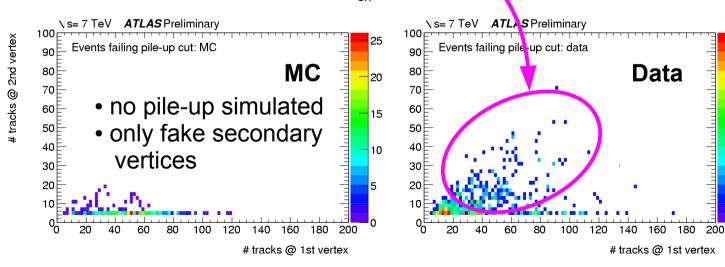
n^{BS}

Data 2010

6

7

5


 $\sqrt{s} = 7 \text{ TeV}$

- Require reconstructed vertex
 - Allow precise location of primary interaction
 - Uses min. 2 tracks ($p_{T} > 100 \text{ MeV}$) + beamspot
- Measure vertex efficiency from data:

Triggered events with vertex All triggered events

Pile-Up

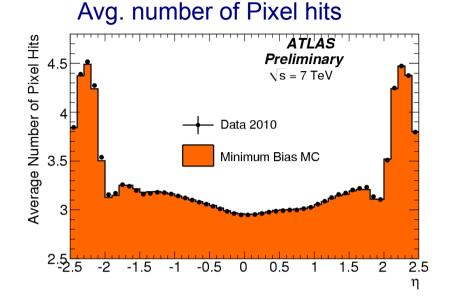
- First pile-up events visible
- Secondary vertices with many tracks (high $n_{\rm ch}$)
- Strategy: Reject events with pile-up (contribution: ~0.1% overall, < 6% at high n_{ch})

Vertex Efficiency

Vertex Reconstruction Efficiency

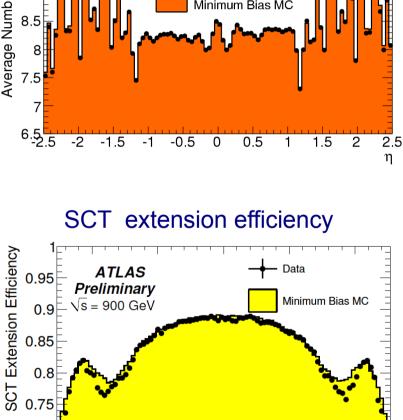
0.95

0.9


0.85

2

3



Description of Tracks in the ID ATI AS Experiment

- Excellent description of track properties
- Detailed studies of material, alignment, and resolution
- Global systematic uncertainty on track efficiency: ~3%
- Dominated by conservative estimate of material description (depends on region)
- Material mapping workhorse: SCT extension efficiency – check if tracks in the Pixel detector extend to the SCT

Avg. number of SCT hits Average Number of SCT Hits ATLAS Preliminary 10 $\sqrt{s} = 7 \text{ TeV}$ 9.5 Data 2010 9 Minimum Bias MC 8.5

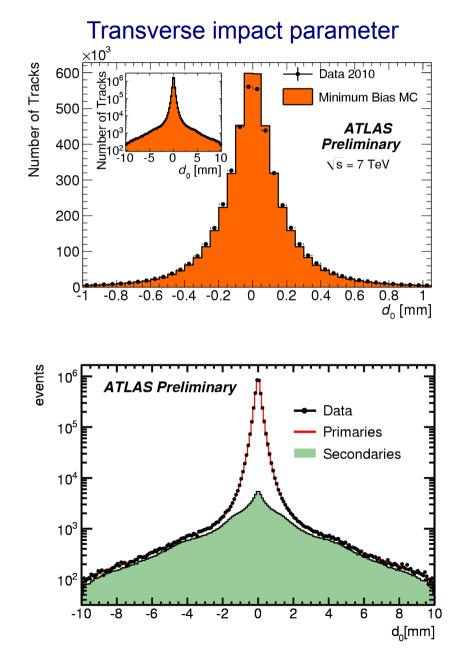
0

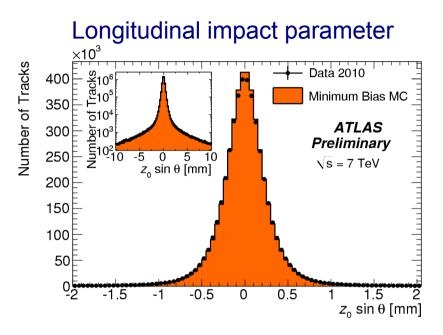
-1

0.7

0.65

0.6


-2

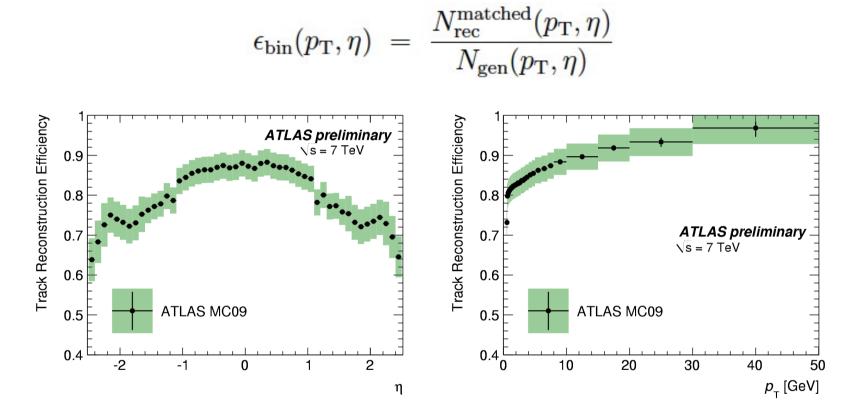

a

2

η

- Only want to count particles from primary interaction
- Define primary particles to have lifetime $\tau < 3x10^{-11}s$
- Reduce secondary particles using impact parameter cuts

```
d_0 < 1.5 \text{ mm}
```


$$\sin\theta \cdot z_0 < 1.5 \text{ mm}$$

- Distributions well described by the simulation
- Subtract remainder from the data using a template fit to MC (contribution: ~2%)

ATLAS Track Reconstruction Efficiency

- Excellent description of tracks allows determination of primary track efficiency from MC
- Use hit matching method to compare particles to tracks

Correction of distributions in $n_{\rm ch}$

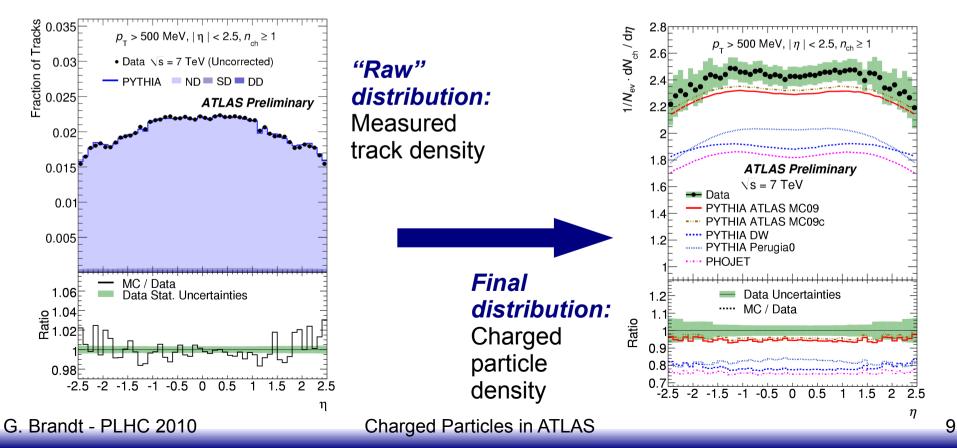
- Track inefficiency leads to bin migrations and event loss (at low multiplicities)
- Bayesian unfolding using track migration matrix
- Analytic event loss correction based on average track efficiency of 76%

ATLAS Track-to-Particle Correction

Correction for $dN_{ch}/d\eta$, dN_{ch}/dp_T distributions

• Apply efficiencies and other corrections as weights during analysis

Event-weight

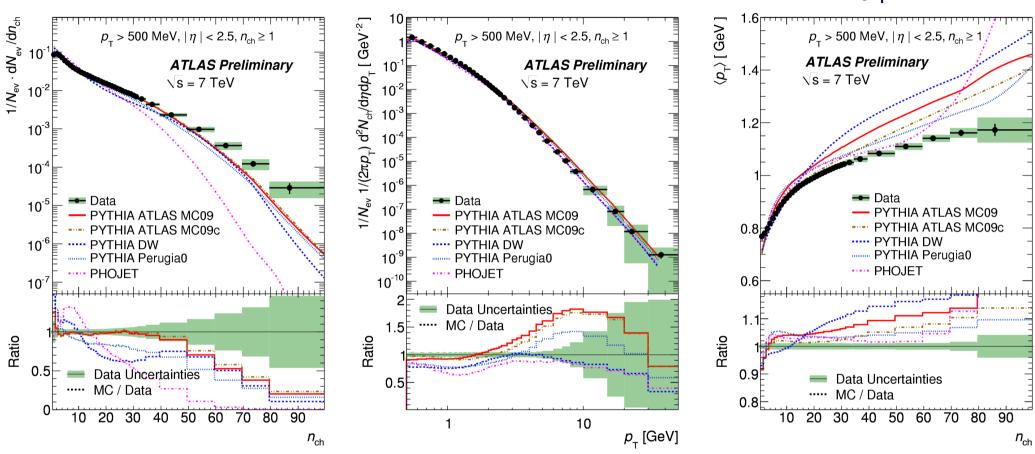

• Trigger- and vertex efficiency

Track-weight

- Track efficiency
- Secondaries
- Out-of-phasespace

$$w_{\rm trk}(p_{\rm T},\eta) = \frac{1}{\epsilon_{\rm bin}(p_{\rm T},\eta)} \cdot (1 - f_{\rm sec}(p_{\rm T})) \cdot (1 - f_{\rm okr}(p_{\rm T},\eta))$$

 $w_{\rm ev}(N_{\rm Sel}^{\rm BS}) = \frac{1}{\epsilon_{\rm trig}(N_{\rm Sel}^{\rm BS})} \cdot \frac{1}{\epsilon_{\rm vtx}(N_{\rm Sel}^{\rm BS})}$



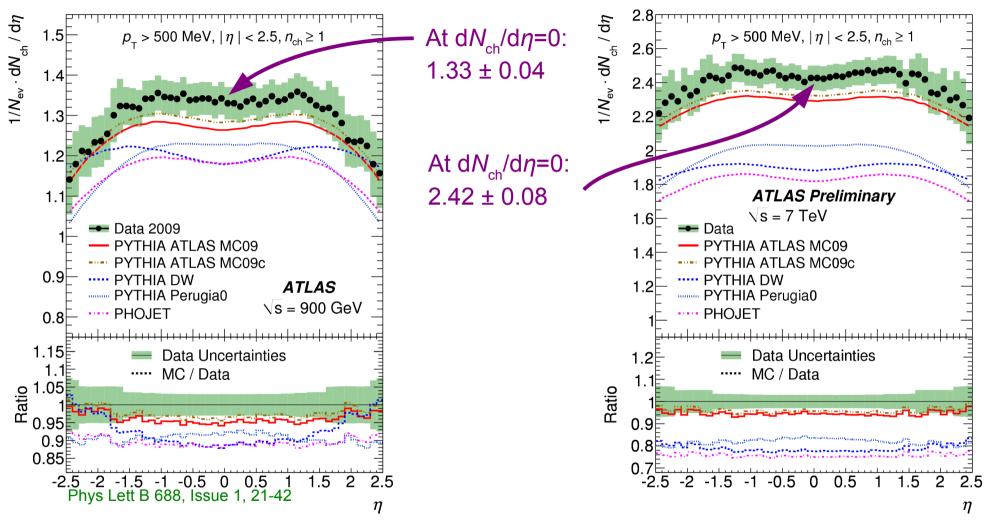
ATLAS Results at $\sqrt{s} = 7$ TeV

<p_;

 dN_{ch}/dn_{ch}

 dN_{ch}/dp_{T}

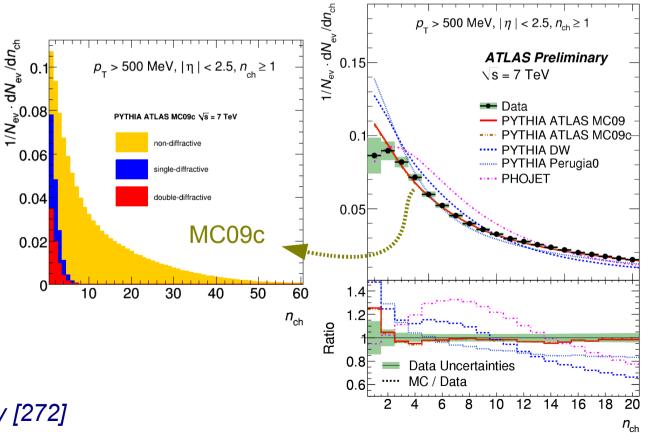
- Compare to selected PYTHIA tunes and PHOJET
- Particle multiplicity density overestimated at very low n_{ch} , underestimated up to 90% at n_{ch} >50
 - ATLAS MC09c tune comes closest
- Transverse momentum underestimated at $p_{T} < 5$ GeV, up to 200% discrepancy above
- Average p_{T} too high in all models
 - G. Brandt PLHC 2010


Charged Particles in ATLAS

ATLAS Charged Particle Density in η

$dN/d\eta$ at \sqrt{s} =7 TeV

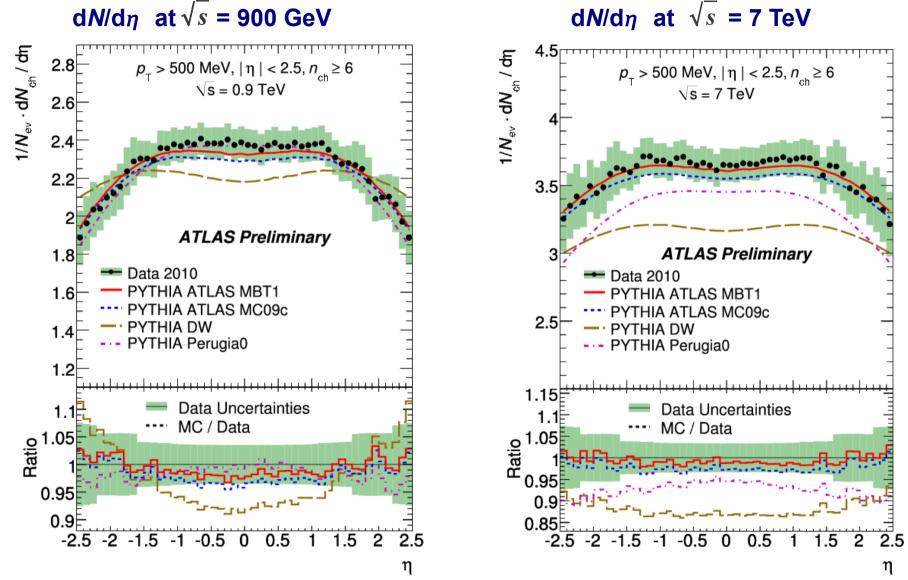
- For both energies the data are 5%-15% above existing Monte Carlo predictions
- Models were tuned in different phase space to data from other colliders
- Again ATLAS MC09c tune comes closest
- Can we do better ... ?


G. Brandt - PLHC 2010

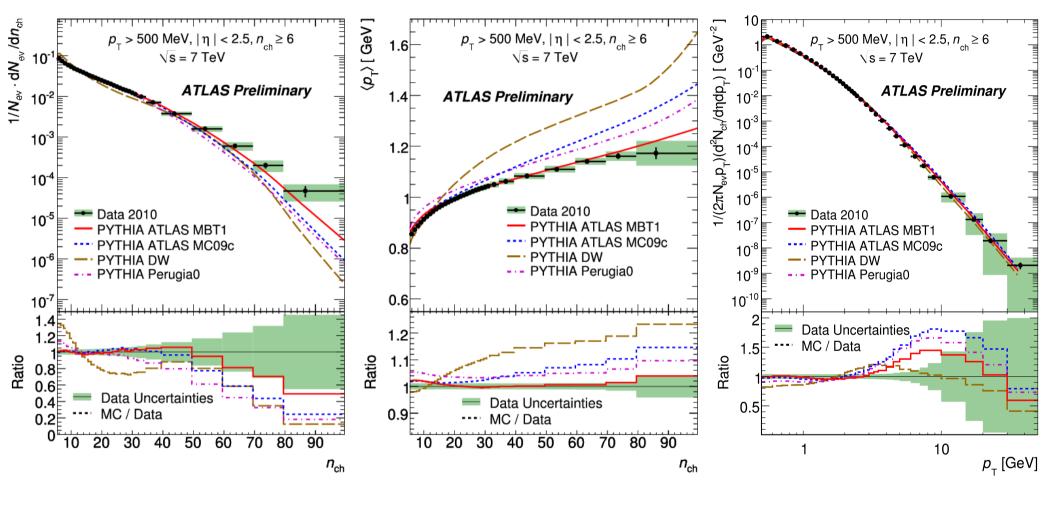
Charged Particles in ATLAS

11

ATLAS AMBT1: Idea and Strategy


- Data above MC for exisiting models do our own ATLAS Minimum Bias Tune 1
- Diffractive components: cross section and shapes not well known
- Large influence on normalisation of all distributions via N_{ev} (measured as integral of n_{ch} distribution)
- To avoid these model dependencies / uncertainties suppress influence of diffractive events: Go to $n_{ch} \ge 6$
- Start from best tune MC09c
- ATLAS Tune Pedigree: MC09 → MC09c → AMBT1 (ATL-PHYS-PUB-2010-002)
- Systematic tuning using PROFESSOR tool (*Eur.Phys.J.C65:331-357,2010*)
- Input Data:
 - ATLAS MB distributions at \sqrt{s} = 0.9 TeV and 7 TeV
 - TeVatron data
 - ATLAS underlying event measurements
 - \rightarrow see talk by Markus Warsinsky [272]

ATLAS $dN/d\eta$ for $n_{ch} \ge 6$ at $\sqrt{s} = 0.9$ and 7 TeV



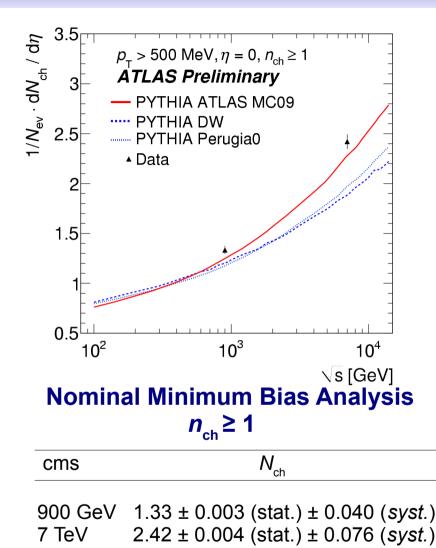
- Overall better description of data by MC in diffraction-reduced phasespace
- AMBT1: Description now within $3\% (\sqrt{s} = 900 \text{ GeV})$ and $2\% (\sqrt{s} = 7 \text{ TeV})$

ATLAS Charged Particles in $n_{ch} \ge 6$ at $\sqrt{s} = 7$ TeV

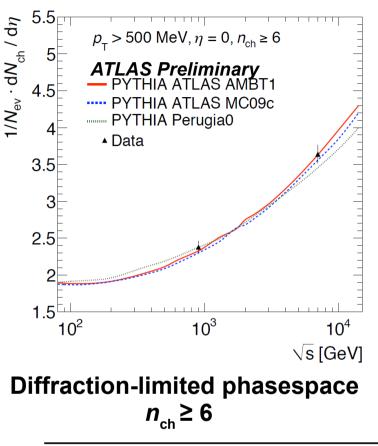
AMBT1

Description within errors up to $n_{ch} < 70$ • AMBT1

Description within 2% (except in last bin)


 \rightarrow These distributions look also better at \sqrt{s} = 900 GeV

Charged Particles in ATLAS


- AMBT1
 - Good Description up to $p_{\rm T}$ < 4 GeV
 - Deviation above reduced to 50%

ATLAS Energy Scan at $dN_{ch}/d\eta=0$

- Predictions from PYTHIA tunes
- 5% 15% below the data

cms	$N_{ m ch}$	
900 GeV	2.38 ± 0.01 (stat.) $\pm 0.08(syst.)$	
7 TeV	3.64 ± 0.01 (stat.) $\pm 0.12(syst.)$	

- Good agreement of data and MC predictions at both cme
- Better extrapolation to cme 14 TeV can be expected point of the whole exercise

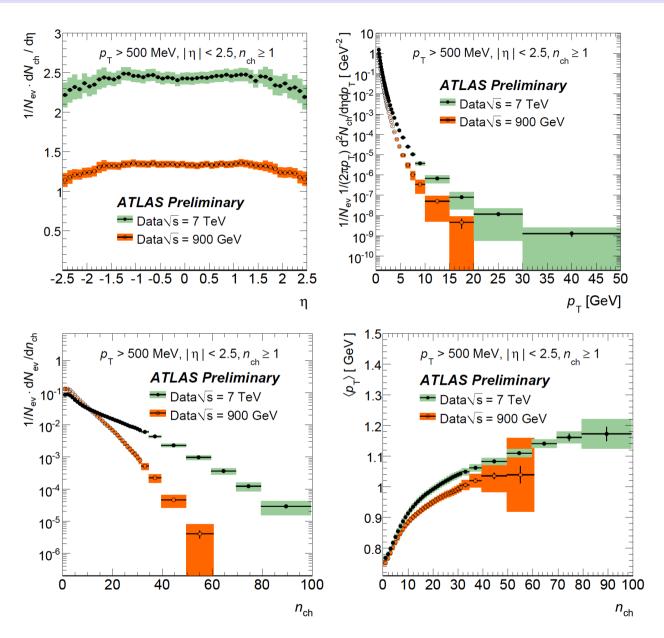
Results of nominal minimum bias analysis

- Charged particle multiplicities were studied in p-p interactions at cme $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV in the region $|\eta| < 2.5$, $p_T > 500$ MeV, $n_{ch} \ge 1$
- Excellent description of tracks in the ATLAS Inner Detector
- Data were corrected with minimal dependence on simulation
- Charged-particle multiplicity per event and unit of pseudorapidity at η =0 is measured to be 5%-15% higher than Monte Carlo models.

Diffraction Limited Phasespace $n_{ch} \ge 6$

- Reduced uncertainties from diffractive components
- Generated first tune to LHC data:

ATLAS Minimum Bias Tune 1


• Allows unprecedented good description of charged particle multiplicities at cme 0.9 and 7 TeV well within systematic uncertainties (2%-3%) for $p_{\rm T}$ < 4 GeV

backup

ATLAS Comparison of 0.9 TeV and 7 TeV Results

- 900 GeV data published in *Phys Lett B 688, Issue 1, 21-42*
- When going from \sqrt{s} = 900 GeV to \sqrt{s} = 7 TeV
 - Higher multiplicity
 - Harder p_{T} spectrum
- At 900 GeV similar comparison to Monte Carlo: Data 5%-15% higher

Parameter	related model	MC09c value	scanning range	AMBT1 value
PARP(62)	ISR cut-off	1.0	fixed	1.025
PARP(93)	primordial kt	5.0	fixed	10.0
PARP(77)	CR suppression	0.0	0.25 1.15	1.016
PARP(78)	CR strength	0.224	0.2 0.6	0.538
PARP(83)	MPI (matter fraction in core)	0.8	fixed	0.356
PARP(84)	MPI (core of matter overlap)	0.7	0.0 1.0	0.651
PARP(82)	MPI (p_T^{min})	2.31	2.1 2.5	2.292
PARP(90)	MPI (energy extrapolation)	0.2487	0.18 0.28	0.250

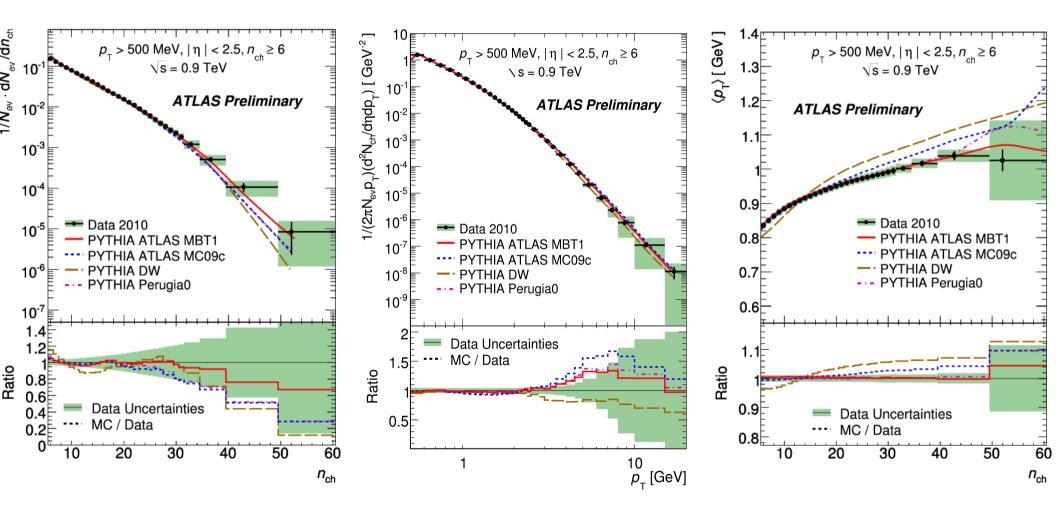
Systematic uncertainty on the number of events, N _{ev}		
Trigger efficiency	0.2%	
Vertex-reconstruction efficiency	< 0.1%	
Track-reconstruction efficiency	0.8%	
Different Monte Carlo tunes	0.4%	
Total uncertainty on $N_{\rm ev}$	1.2%	
Systematic uncertainty on $(1/N_{ev}) \cdot (dN_{ch}/d\eta)$ at $\eta = 0$		
Track-reconstruction efficiency	3.8%	
Trigger and vertex efficiency	< 0.1%	
Secondary fraction	0.1%	
Total uncertainty on $N_{\rm ev}$	-0.9%	
Total uncertainty on $(1/N_{\rm ev}) \cdot (dN_{\rm ch}/d\eta)$ at $\eta = 0$	2.9%	

ATLAS Data used in AMBT1

Analysis	Observable	Tuning range
ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$	$\frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ch}}{\mathrm{d}\eta}$	-2.5 - 2.5
ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$	$\frac{\frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{d^2 N_{\rm ch}}{d\eta d p_{\rm T}}}{\frac{1}{N_{\rm ev}} \cdot \frac{dN_{\rm ev}}{d\eta_{\rm ch}}}$	≥ 5.0
ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$	$\frac{1}{N_{\rm ev}} \cdot \frac{{\rm d}N_{\rm ev}}{{\rm d}n_{\rm ch}}$	≥ 20
ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$	$\langle p_{\rm T} \rangle$ vs. $n_{\rm ch}$	≥ 10
ATLAS 0.9 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (towards)	$\geq 5.5 \text{ GeV}$
ATLAS 0.9 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (transverse)	$\geq 5.5 \text{ GeV}$
ATLAS 0.9 TeV, UE in minimum bias	$\left<\frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi}\right>$ (away)	$\geq 5.5 \text{ GeV}$
ATLAS 0.9 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (towards)	$\geq 5.5 \text{ GeV}$
ATLAS 0.9 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (transverse)	$\geq 5.5 \text{ GeV}$
ATLAS 0.9 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (away)	$\geq 5.5 \text{ GeV}$
ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$	$\frac{1}{N_{\rm ev}} \cdot \frac{{\rm d}N_{\rm ch}}{{\rm d}\eta}$	-2.5 - 2.5
ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$	$\frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{{\rm d}^2 N_{\rm ch}}{{\rm d}\eta dp_{\rm T}}$ $\frac{1}{N_{\rm ev}} \cdot \frac{{\rm d}N_{\rm ev}}{{\rm d}n_{\rm ch}}$	≥ 5.0
ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$	$\frac{1}{N_{\rm ev}} \cdot \frac{{\rm d}N_{\rm ev}}{{\rm d}n_{\rm ch}}$	≥ 40
ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$	$\langle p_{\rm T} \rangle$ vs. $n_{\rm ch}$	≥ 10
ATLAS 7 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (towards)	$\geq 10 \text{ GeV}$
ATLAS 7 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (transverse)	$\geq 10 \text{ GeV}$
ATLAS 7 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (away)	$\geq 10 \text{ GeV}$
ATLAS 7 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (towards)	$\geq 10 \text{ GeV}$
ATLAS 7 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (transverse)	$\geq 10 \text{ GeV}$
ATLAS 7 TeV, UE in minimum bias	$\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \rangle$ (away)	$\geq 10 \text{ GeV}$

G. Brandt - PLHC 2010

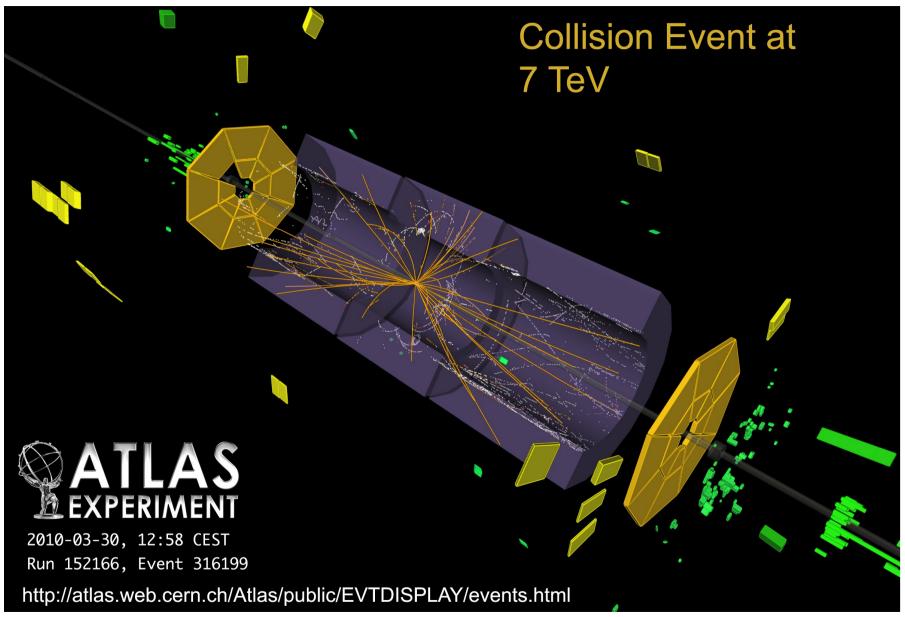
Charged Particles in ATLAS

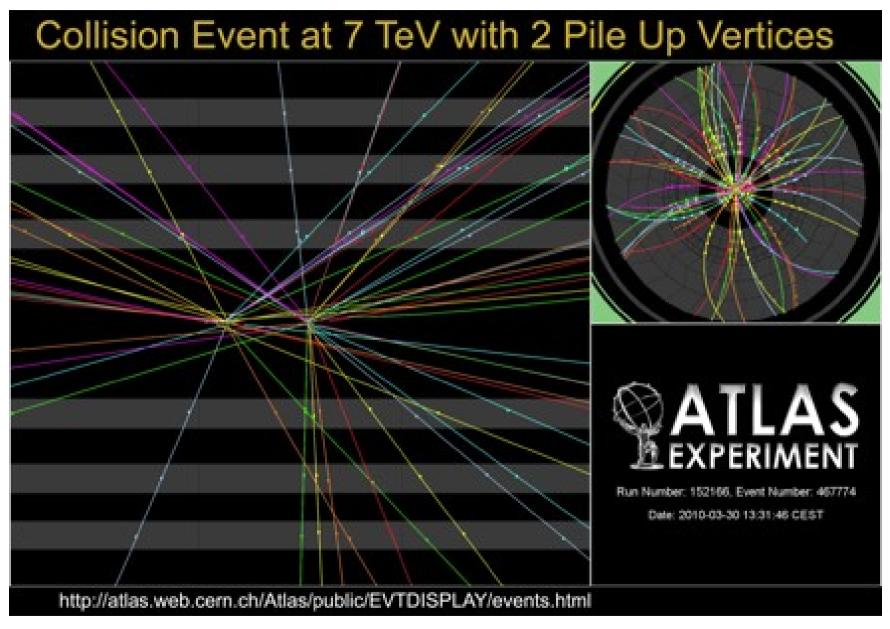

Observables

CDF Run I underlying event in dijet events[14] (leading jet analysis) $N_{\rm ch}$ density vs leading jet p_T (transverse), JET20 $N_{\rm ch}$ density vs leading jet p_T (toward), JET20 $N_{\rm ch}$ density vs leading jet p_T (away), JET20 $\sum p_T$ density vs leading jet p_T (transverse), JET20 $\sum p_T$ density vs leading jet p_T (toward), JET20 $\sum p_T$ density vs leading jet p_T (away), JET20 $N_{\rm ch}$ density vs leading jet p_T (transverse), min bias $N_{\rm ch}$ density vs leading jet p_T (toward), min bias $N_{\rm ch}$ density vs leading jet p_T (away), min bias $\sum p_T$ density vs leading jet p_T (transverse), min bias $\sum p_T$ density vs leading jet p_T (toward), min bias $\sum p_T$ density vs leading jet p_T (away), min bias p_T distribution (transverse), leading $p_T > 5$ GeV p_T distribution (transverse), leading $p_T > 30$ GeV

	CDF Run I underlying event in MIN/MAX-cones[15] ("MIN-MAX" analysis)
	$\langle p_T^{\text{max}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 1800 \text{GeV}$
	$\langle p_T^{\min} \rangle$ vs. E_T^{fead} , $\sqrt{s} = 1800 \text{ GeV}$
-	$\langle p_T^{\text{diff}} \rangle$ vs. E_T^{fead} , $\sqrt{s} = 1800 \text{GeV}$
=	$\langle N_{\rm max} \rangle$ vs. $E_T^{\rm lead}$, $\sqrt{s} = 1800 {\rm GeV}$
	$\langle N_{\rm min} \rangle$ vs. $E_T^{\rm fead}$, $\sqrt{s} = 1800 {\rm GeV}$
	Swiss Cheese p_T^{sum} vs. E_T^{lead} (2 jets), $\sqrt{s} = 1800 \text{ GeV}$
	$\langle p_T^{\text{max}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 630 \text{ GeV}$
	$\langle p_T^{\text{min}} \rangle$ vs. E_T^{fead} , $\sqrt{s} = 630 \text{GeV}$
	$\langle p_T^{\text{diff}} \rangle$ vs. E_T^{fead} , $\sqrt{s} = 630 \text{GeV}$
	Swiss Cheese p_T^{sum} vs. E_T^{lead} (2 jets), $\sqrt{s} = 630 \text{ GeV}$
	D0 Run II dijet angular correlations[16]
	Dijet azimuthal angle, $p_T^{\text{max}} \in [75, 100]$ GeV
	Dijet azimuthal angle, $p_T^{\text{max}} \in [100, 130]$ GeV
	Dijet azimuthal angle, $p_T^{\text{max}} \in [130, 180]$ GeV
	Dijet azimuthal angle, $p_T^{\text{max}} > 180 \text{ GeV}$
	CDF Run II minimum bias[17]
_	$\langle p_{\rm T} \rangle$ of charged particles vs. $N_{\rm ch}$, $\sqrt{s} = 1960 {\rm GeV}$
	$CDF Run I Z p_{T}[18]$
	$\frac{d\sigma}{d\sigma^2}$, $\sqrt{s} = 1800 \text{GeV}$

$$\frac{d\sigma}{dp_{\rm T}^2}$$
, $\sqrt{s} = 1800 \,{\rm GeV}$


ATLAS Charged Particles in $n_{ch} \ge 6$ at cme 0.9 TeV


DESY

