

Charged Particle Multiplicities and Spectra with ALICE

Peter Hristov, CERN/PH on behalf of the ALICE Collaboration

- Published results
 - $dN_{ch}/d\eta\,$ at 0.9 TeV. EPJC 65 (2010) 111
 - Accepted by EPJC:
 - dN_{ch}/d\eta and dN/dN_{ch} at 0.9 and 2.36 TeV. <u>hep-ex:1004.3034(2010)</u>
 - dN_{ch}/d η and dN/dN_{ch} at 7.0 TeV. <u>hep-ex:1004.3514(2010)</u>
- New results
 - P_T spectra of charged particles at 0.9 TeV
- Summary

Event Classes

0.9 and 2.36 TeV

- Inelastic (INEL) = Single-diffractive (SD) + Double-diffractive (DD) + Non-diffractive (ND);
- Non-single diffractive (NSD)
- Use measured cross sections for diffractive processes
 - Change MC generator fractions (SD/INEL, DD/INEL) such that they match these fractions
 - Use Pythia and Phojet to assess effect of uncertainty in the kinematics of diffractive processes

7 TeV

- Diffraction is quite unknown
- Hadron-level definition of events to minimize model dependence
 - All events that have at least one charged primary particle in |η| < 1: "INEL>0"

Data Samples

CE Energy, TeV	Mag. field, T	Online trigger	Events	Trig. Events: z _v <5.5cm
0.9	0	BPTX AND SPD	284	
0.9	-0.5	BPTX AND (V0A.OR.V0C.OR.SPD)	150000	47000
2.36	-0.5	BPTX AND SPD	40000	35000
7.0	7.0-0.5BPTX AND (VOA.OR.VOC.OR.SPD		380000	240000

- BPTX Beam pick-up counters
- V0 scintillator detector,

2.8 <η< 5.1 and -3.7 <η< -1.7

SPD – ITS pixel layers (fast OR), $|\eta| < 2$

Vertex Reconstruction

The reconstruction correlates the hits in the two pixel layers. 10^{-1} Resolution:

longitudinal 0.1-0.3 mm transverse 0.2-0.5 mm

Good agreement with MC

More details in the poster of Davide Caffarri

Pseudorapidity Density dN/dŋ

- Analysis:
 - Based on tracklets (hits in the two SPD layers that form short track segments): wider acceptance => smaller corrections
 - Triggered events with vertex
 - Select primary charged particles: matching with the primary vertex, quality cuts
 - Apply multidimensional (η , z_v , p_T) corrections

Primary particles = charged particles produced in the collision and their decay products excluding weak decays from strange particles

- Track-to-particle correction
 - Detector acceptance, tracking efficiency
 - Decay, conversions, stopping, etc.
 - Low momentum cut-off (B≠0)
- Correction for vertex reconstruction efficiency/ bias
- Trigger bias correction
 - Using control triggers
 - From MC
- For NSD: remove residual contamination from SD

dN_{ch}/dη – Results & Comparison to Other Experiments

Good agreement with UA5 (INEL at 0.9 TeV) and CMS (NSD at 0.9 TeV and 2.36 TeV)

dN_{ch}/dη – Comparison to Models

- ALIC Pythia D6T and Perugia-0 match neither INEL, NSD, INEL>0 at all three energies
 - Pythia Atlas CSC and Phojet reasonably close with some deviations at 0.9 and 2.36 TeV
 - Only Atlas CSC close at 7 TeV

dN_{ch}/dŋ

NSD

ALICE pp

D6T (109)

Atlas CSC (306)

Perugia-0 (320)

PHOJET

-1

П

.

.

.

0

-2

 $\sqrt{s} = 2.36 \text{ TeV}$

n

INEL

ALICE pp

D6T (109)

Atlas CSC (306)

Perugia-0 (320)

PHOJET

8

Increase in $dN_{ch}/d\eta$ in	√s	ALICE (%)	MCs (%)
$ \eta < 1$ for INEL > 0	0.9 → 2.36 TeV	$23.3 \pm 0.4_{-0.7}^{+1.1}$	15 – 18
arXIV:1004.3514	0.9 → 7 TeV	57.6 ± 0.4 _{-1.8} ^{+3.6}	33 – 48

Multiplicity Distributions

- Analysis:
 - Select z_v interval where the η acceptance is uniform (MC): | z_v|<5.5cm
 - Efficiency, acceptance =>
 Detector response function
 (MC): Probability that a
 collision with the true
 multiplicity *t* is measured as an
 event with the multiplicity *m*

- Unfolding
 - Regularization: $\chi^2(U)$ -> min

$$\chi^{2}(U) = \sum_{m} \left(\frac{M_{m} - \sum_{t} R_{mt} U_{t}}{e_{m}} \right)^{2} + \beta R(U)$$

Bayesian: iterative

$$\tilde{R}_{tm} = \frac{R_{mt}P_t}{\sum_{t'}R_{mt'}P_{t'}}, \quad U_t = \sum_m \tilde{R}_{tm}M_m$$

Smooth (or not) U_t and use it as P_t

- Corrections for vertex reconstruction and trigger bias
 - Like for dN_{ch}/dη, but in unfolded variables (true multiplicity) because it is applied after unfolding

Multiplicity Distributions at 0.9 TeV

- Distributions in limited η-regions
- Consistent with UA5
- Fits with one NBD work well in limited $\eta\text{-regions}$
- Difference between INEL and NSD in low-multiplicity region

Multiplicity Distributions at 2.36 and 7 TeV

• Fits with one NBD work also at 2.36 and 7 TeV

Charged Particle Multiplicities and Spectra with ALICE - Peter Hristov

12

Multiplicity Distributions: Comparison to MC

- Phojet
 - provides a good description at 0.9 TeV
 - fails at 2.36 and 7 TeV
- Pythia: Atlas CSC
 - fails at 0.9 TeV
 - reasonably close at 2.36 and 7 TeV but deviations around 10-20
- Pythia: D6T and Perugia-0 far from the distribution at all energies

Charged Particle Multiplicities and Spectra with ALICE - Peter Hristov

13

dN_{ch}/dp_{T} – Results

- The selection of primary tracks is based on the transverse impact parameter from ITS (7σ) + quality criteria in ITS and TPC
- The momentum is estimated by TPC (the ITS-TPC alignment is not final) $\sigma(p_T)/p_T = 0.01 \oplus 0.007 p_T, p_T \text{ in } GeV/c$
- A fit is used to extrapolate the distribution to $p_{T}=0$

 $\left(1+\frac{E_T}{E_T}\right)$

Charged Particle Multiplicities and Spectra with ALICE - Peter Hristov

 $\frac{d^2 N_{ch}}{d} \propto p_T$

 $d\eta dp_{\tau}$

dN_{ch}/dp_T – Comparison to Other **Experiments**

- Good agreement at p_{τ} <1 GeV/c
- ALICE spectrum harder at higher p_{T}

UA1 sees higher yield at low p_T larger η acceptance

Charged Particle Multiplicities and Spectra with ALICE - Peter Hristov

10

p_ (Gev/c)

dN_{ch}/dp_T – Comparison to MC

- PYTHIA D6T and Perugia0 describe shape reasonably well but fail in the yield
- PHOJET and ATLAS-CSC are off

<p_> Dependence on Multiplicity

- In bins of observed multiplicity n_{acc}
 - Fits of p_T spectra and calculation of mean
 - Calculation of mean p_T in a "visible" interval: weighted average over data points
 - Calculation of mean p_T in a "visible "interval combined with extrapolation from a fit at low momenta

<p_T> vs Multiplicity: from n_{acc} to n_{ch}

n_{acc}: number of accepted particles in |η|<0.8, p_T>0.15 GeV/c
n_{ch}: number of all primaries in |η|<0.8, p_T>0

 $< p_T > (n_{ch}) = \Sigma p_T(n_{acc})R(n_{acc}, n_{ch})$, where $R(n_{acc}, n_{nch})$: response matrix from MC

<p_T> vs multiplicity – comparison to MC

- p_T>500 MeV/c: PYTHIA Perugia0 gives good description of the data
- p_T>150 MeV/c: all models fail

Summary

- The average multiplicity increases significantly faster than predicted by Pythia and Phojet
- The multiplicity and transverse momentum distributions are not described satisfactory by MC generators. Tuning needed!
- More new results to come soon!

Many thanks to Jan Fiete Grosse-Oetringhaus, Harald Appelshaeuser, Jacek Otwinowski, Andrea Dainese, Boris Hippolyte, Federico Antinori, Luciano Ramello, Karel Safarik

Systematics

Systematic uncertainties at 900 GeV in %	INEL	NSD
Fractions ND/DD/SD	0.6	2.8
MC dependence	1.0	
Detector efficiency	1.5	
Particle composition*	0.5 - 1.0	
Material budget	negl.	
p _T spectrum	0.5	
SPD triggering efficiency	negl.	
V0 triggering efficiency	negl.	0.5
Background	negl.	
Total	2.7	3.4

Systematics

Uncertainty	$dN_{ch}/d\eta$ analysis		$P(N_{\rm ch})$ analysis	
	$0.9 \mathrm{TeV}$	2.36 TeV	0.9 TeV	2.36 TeV
Tracklet selection cuts	negl.	negl.	negl.	negl.
Material budget	negl.	negl.	negl.	negl.
Misalignment	negl.	negl.	negl.	negl.
Particle composition	0.5 - 1.0%	0.5 - 1.0%	included in detector efficiency	
Transverse-momentum spectrum	0.5%	0.5%	included in detector efficiency	
Contribution of diffraction (INEL)	0.7%	2.6%	3-0% (0-5)	5-0% (0-5)
Contribution of diffraction (NSD)	2.8%	2.1%	24-0 % (0-10)	12-0% (0-10)
Event-generator dependence (INEL)	+1.7%	+5.9%	8-0% (0-5)	25-0 % (0-10)
Event-generator dependence (NSD)	-0.5%	+2.6%	3-5-1 % (0-10-40)	32-8-2% (0-10-40)
Detector efficiency	1.5%	1.5%	2-4-15 % (0-20-40)	3-0-9% (0-8-40)
SPD triggering efficiency	negl.	negl.	negl.	negl.
VZERO triggering efficiency (INEL)	negl.	n/a	negl.	n/a
VZERO triggering efficiency (NSD)	0.5%	n/a	1%	n/a
Background events	negl.	negl.	negl.	negl.
Total (INEL)	$^{+2.5}_{-1.8}\%$	$^{+6.7}_{-3.1}$ %	9-4-15 % (0-20-40)	25-0-9% (0-10-40)
Total (NSD)	+3.3 %	+3.7 %	24-5-15 % (0-10-40)	32-8-9% (0-10-40)