

Transverse momentum and pseudorapidity distributions of charged hadrons at CMS

PLHC 2010, Hamburg

Yen-Jie Lee (MIT) for the CMS Collaboration

- The bulk of the particles produced in pp collisions arise from soft interactions, which are modeled only phenomenologically.
- Soft processes contain: elastic scattering, single-diffractive, doublediffractive and non-diffractive (NSD) → to be presented today
- Results of dN/dη, dN/dp_τ and <p_τ> of charged hadrons at 0.9, 2.36,
 7.0 TeV are presented.
- 7.0 TeV: Highest collision energy ever!
- Experimental results provide the critical guidance for tuning these widely-used models and event generators, and preparation for the high-luminosity runs at LHC.
- Provide important reference for the heavy ion collisions.

The CMS Detector

- Magnetic field: 3.8 Tesla
- Inner tracker: $|\eta| < 2.5$

```
• BSC 3.23 < |\eta| < 4.65 partial coverage in the \varphi direction
```

• Forward Calorimeter (HF): $2.9 < |\eta| < 5.2$

(Beam Scintillation Counter)

Trigger and Event Selection

- Trigger: any hit in the Beam Scintillator Counters (BSC, 3.23 < |η| < 4.65) AND a filled bunch passing the beam pickups (BPTX)
- Off-line event selection (NSD):
 - >3 GeV total energy on both sides in the Forward Calorimeter (HF 2.9 < $|\eta|$ < 5.2)
 - BSC Beam Halo rejection (BSC)
 - Dedicated beam background rejection
 - Collision vertex
- 55100 events are selected after all cuts (7 TeV). Event selection efficiency is checked by MC and ZeroBias sample.

Yen-Jie Lee

Beam gas event rejection

Trigger Efficiencies

	PYTHIA								
Energy	0.9 TeV			2.36 TeV			7.0 TeV		
	Frac.	Sel. Eff.	Sel. Frac.	Frac.	Sel. Eff.	Sel. Frac.	Frac.	Sel. Eff.	Sel. Frac.
SD	22.5%	16.1%	5.2%	21.0%	21.8%	6.3%	19.2%	26.7%	6.8%
DD	12.3%	35.0%	6.2%	12.8%	33.8%	5.9%	12.9%	33.6%	5.8%
ND	65.2%	95.2%	88.7%	66.2%	96.4%	87.8%	67.9%	96.4%	87.4%
NSD	77.5%	85.6%	94.8%	79.0%	86.2%	93.6%	80.8%	86.3%	93.1%
	PHOJET								
Energy	0.9 TeV			2.36 TeV			7.0 TeV		
	Frac.	Sel. Eff.	Sel. Frac.	Frac.	Sel. Eff.	Sel. Frac.	Frac.	Sel. Eff.	Sel. Frac.
SD	18.9%	20.1%	4.9%	16.2%	25.1%	5.0%	13.8%	30.7%	5.0%
DD	8.4%	53.8%	5.9%	7.3%	50.0%	4.5%	6.6%	48.3%	3.8%
ND	72.7%	94.7%	89.2%	76.5%	96.5%	90.5%	79.6%	97.1%	91.2%
NSD	81.1%	90.5%	90.9%	83.8%	92.4%	89.5%	86.2%	93.4%	95.0%

- Predictions from PYTHIA and PHOJET are studied.
- High NSD trigger efficiency > 85%.
 SD Fraction after the event selection is 5% 7%.
- Difference between PHOJET SD definition and PYTHIA is at 2% level.

Estimating the diffractive component from data

Our measurement is corrected for non-single-diffractive events!

The calorimeter data is used to fit the SD+DD fraction in data using PYTHIA event shapes. PHOJET was also studied similarly.

Cluster Counting Method

Tracklet Method

Data 0.9 TeV Data 2.36 TeV

PYTHIA 0.9 TeV

PYTHIA 2.36 TeV

Primaries in MC

0.1

n

Δŋ

0.2

- Uses all pixel and strip layers.
- Builds particle trajectories iteratively
- Low fake rate achieved with cleaning based on cluster shapes.
- Primary vertex reconstructed from tracks
 - agglomerative vertexing
- Compatibility with beam spot and primary vertex required
- Immune to background
- More sensitive to beam spot position and detector alignment

 p_{T} -reach: down to 100 MeV/c

Measured down to 150 MeV Important: turn-over of the yields

Fit with the Tsallis-function:

$$E\frac{d^3N_{\rm ch}}{dp^3} = \frac{1}{2\pi p_T} \frac{E}{p} \frac{d^2N_{\rm ch}}{d\eta dp_T} = C(n, T, m) \frac{dN_{\rm ch}}{dy} \left(1 + \frac{E_T}{nT}\right)^{-n}$$

Behavior of the function:

- exponential at low p_T
- power-law at high $\boldsymbol{p}_{\scriptscriptstyle T}$

$$= 545 \pm 5(stat) \pm 15(syst) MeV/c$$

Differential yield of charged hadrons in the range $|\eta| < 2.4$ The η bins are shifted by six units vertically.

P_{T} -distribution at 7 TeV

- The transverse-momentum distribution of charged hadrons was measured up to 6 GeV/c.
- Well described by the Tsallisfunction combining a low-p_T exponential with a high-p_T tail phenomenologically.
- With increasing energy, the p_τspectrum gets "harder" (as expected)

Measured yield of charged hadrons for $|\eta| < 2.4$, fit with the Tsallis function.

Energy dependence Compared with Models

Comparisons with models, MCs

dN/dη ratio

- Increase from 0.9 to 7 TeV:
 (66.1 ±1.0(stat) ± 4.2(syst))%
- ALICE measurement: (INEL_{nch>1})
 (57.6±0.4(stat.) ^{+3.6}/_{-1.8} (syst.))%
- Most of the PYTHIA tunes predicted a lower increase in dN/dη.

Increase from 0.9 TeV to 7 TeV

Summary

- CMS is an excellent detector for the minimum bias physics study: (Large coverage, MinBias triggers, low p_{τ} reach).
- CMS has published two NSD dN/dŋ and dN/dp_T papers which present the results from 0.9, 2.36 and 7.0 TeV.
 - Results are checked with PYTHIA tunes and PHOJET.
 - 7 TeV results are checked with B=0 data with tracklet method.
- The measured NSD dN/d η and $<\!p_{_{T}}\!>$ are compared with predictions (postdictions) from various of phenomenological models.
- The measured dN/dη is higher than the results from the commonly used PYTHIA tunes while $< p_{T} >$ is lower than the predictions.
 - → Input to the parameter tunning of the color reconnection and multiple parton interaction.

Backup slides

Results: energy dependence

Collision energy dependence of average transverse momentum.

Charged particle pseudorapidity density as a function of collision energy.

Detector performance

- The CMS silicon pixel and strip tracker detectors were used
- Pixels: three 53.3 cm long layers with radii 4.4, 7.3, 10.2 cm
- >97% of all channels were operational, hit efficiency optimized

