
Scanning nano-SAXS: bridging real-space and reciprocal space for biological imaging
► Small Angle X-ray Scattering: quantify structure sizes, morphology, orientations 
 common approach: large ensemble averages in solutions 
 nano-SAXS: focused X-ray beam averages over small volumes 
 it becomes possible see local structures and orientations

► real-space resolution: 
 determined by beam size 
 500 nm down to 50 nm

► scanning technique 
 Example: 20 ms per point, 
 250×250 points, 400 nm steps: 
 100 µm square FOV, 40 minutes

► reciprocal-space resolution: 
 scattering to largest q-vector, 
 currently ~ 1 nm-1

► label-free imaging of biological 
 matter on the nano scale 

► quantitative information 
 channels available: 
	 darkfield	(how	many	photons	are	scattered?	–	measure the electron density), 
	 differential	phase	contrast	(where	are	the	photons	scattered?	–	gradients), 
	 azimuthal	and	radial	analyses	–	quantify	local ordering and structures: 
 e.g. study the actin cytoskeleton and understand the physical parameters of cells

Typical frame and data rates:
► 10 to 100 Hz EigerX 4M 
►	(up	to	750	Hz	possible)

► 50 to 500 Mega Pixel per second

►	~	50	MiB/s	(compressed	LZ4-HDF5), 
► ~ 1 GiB/s (uncompressed for analysis)

Typical scan parameters:
► 50×50 to 250×250	(sometimes	1000×1000)

► from 1 ms to 50 ms per point

► 1011 pixels in less than half an hour
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single 255×255 STXM scan

http://heinzel/stxm/GINIX/
 run60/eiger/desylo/1/1
 ?horz=255&vert=255

+ parameter
+ colour map etc.

parallel regions, e.g.

…/1/   1?horz=255&vert=10,
…/1/2551?horz=255&vert=10,
…/1/5101?horz=255&vert=10,
…/1/7651?horz=255&vert=10
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Parallel jobs via HTTP proxy
► parallelisation is “easy”: 
 many independent Eiger images

► optimal strategy depends on 
	 scan	geometry;	e.g.	stitching-STXM

► full scan is broken down into 
	 patches	with	individual	URLs

►	multiple	requests	to	HTTP	proxy, 
 lighttpd acts as load balancer

► patches are “glued” to full dataset

► all data can be imported from e.g. 
	 Matlab	/	Python	/	whatever	by	URLs

	 URLs	are	“human-readable”
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Performance Benchmarks

Estimated analysis times, 1000×1000-Scan
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Poor scaling on multi-core-systems
►	current	trend:	more	cores	per	CPU, 
	 but	≤	2	MiB	cache	per	core

► full EigerX 4M image: 
	 8	MiB	@	int16_t

► limited speed-up on multi-core

► calculation time vs. latency decreases

► Bottleneck: CPU cache

	 throughput	from	RAM	okay, 
 but latency too high

 multi-core analysis faster than 
	 data	can	flow	into	CPU

► 24 Heinzelmännchen: analysing 
 1000×1000 images in ten minutes

Graphical user interface to generate URLs for analysis

browse detector images, define ROIs, basic pre-processing
(e.g. empty division, subtraction; stack operations)

Composites (2D array of 2D images)

STXM analysis with different algorithms

new: snapshots to share your analysis with colleagues

dada18: web GUI and re-worked C-backend
► dada, the data daemon [5]: 
 centralised entry node to data

►	do	not	worry	about	file	name, 
 folder structure, data format, 
 compression et al. any longer

► reducing obstacles for new students

 centralised entry node to analysis

► collecting our student’s developments, 
 so the next generation can 
 use old methods on new data

► after testing: optimising performance

► web GUI and for the user, 
 HTTP interface for software

►	GUI	to	generate	URLs	for	analysis

► browsing & pre-processing 
	 composites	(2D	array	of	2D	images) 
	 STXM	analysis,	different	algorithms

► new: snapshots and parallel jobs

Remedy: more cache = more CPUs = more boards
►	STXM-cluster	of	individual	systems

►	24	systems	(“Heinzelmännchen”): 
 Boards: ASUS H110M-A M.2 
	 CPUs:	 Intel	Core	i7–7700	@	3.60	GHz 
	 RAM:	 8	GiB	per	node

►	1	control	system	(“Heinzelfrau”): 
	 CPU:	 Intel	Core	i7–8700	@	3.20	GHz 
	 RAM:	 64	GiB 
	 SSD:	 1×Samsung	850	PRO	256	GiB 
 cache: 5×Sandisk	Ultra	II	960	GiB

► network: 
 2×10G uplink from Heinzelfrau, 
 1G per node; 
	 10G	extern	to	NFS	server

► 96 cores, 192 MiB L3-Cache 
 “cheap, but many”

 under construction *now*
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dadafs: network filesystem with multiple caches
►	raw	data	accessible	via	NFS 
 only visible on Heinzelfrau

►	Heinzelmännchen	mount	via 
 fuse-based dadafs-client

► local caching: 
 recently accessed data, 
	 meta	data,	i.e.	calls	to	stat(2)

► Heinzelfrau caching: 
 dadafsd-server caches accessed 
	 file	fragments	on	SSD	(ZFS	pool)

	 results:	cached	in	aerospike	DB 
	 (distributed	caching	database)

► faster than NFS and Samba
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Figure 4. Orientation map and dark-field image of the keratin network in a
freeze-dried eukaryotic cell reconstructed from a mesh scan with a step size of
100 nm and 1 s exposure time. The inset shows a fluorescence microscopy image
of the keratin network recorded before freeze-drying and the scanned region is
marked by a red box.

3.2. Radial intensity of averaged and single diffraction patterns

At each scan point a scattering pattern in reciprocal space is recorded. The scattering signal is
analyzed by azimuthal integration of single and averaged diffraction patterns. To account for
anisotropy in the scattering signal, the reciprocal space is divided into eight angular segments
and the first and fifth segments are centered symmetrically around the major axis of the
ellipse approximating the scattering signal. Average diffraction patterns recorded on the cellular
extension and on the empty region are shown in figures 5(a) and (b) and the angular segments
are indicated by dashed, white lines. For azimuthal integration of the average diffraction pattern
from the empty region, the same positions of the angular segments as for the cell region are
used. The insets indicate from which regions of the scan the diffraction patterns are used to
obtain an average diffraction pattern from the cellular extension and the empty region. Only
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dada-STXM:
parallel analysis of Eiger scanning-SAXS data


