dada-STXM:

parallel analysis of Eiger scanning-SAXS data Markus Osterhoff - Jan Goeman - Sarah Köster - Tim Salditt Institut für Röntgenphysik – Friedrich-Hund-Platz 1 – 37077 Göttingen

Scanning nano-SAXS: bridging real-space and reciprocal space for biological imaging

- Small Angle X-ray Scattering: quantify structure sizes, morphology, orientations common approach: large ensemble averages in solutions nano-SAXS: focused X-ray beam averages over small volumes it becomes possible see *local structures* and orientations
- ► real-space resolution: determined by beam size 500 nm down to 50 nm
- scanning technique *Example*: 20 ms per point, 250×250 points, 400 nm steps: 100 µm square FOV, 40 minutes

Typical frame and data rates:

- ► 10 to 100 Hz EigerX 4M
- ► (up to 750 Hz possible)
- ► 50 to 500 Mega Pixel per second
- ► ~ 50 MiB/s (compressed LZ4-HDF5),

Poor scaling on multi-core-systems

- current trend: more cores per CPU, but ≤ 2 MiB cache per core
- ► full EigerX 4M image: 8 MiB @ int16 t
- ► limited speed-up on multi-core
- calculation time vs. latency decreases
- **Bottleneck: CPU cache**
 - throughput from RAM okay,

- ► reciprocal-space resolution: scattering to largest q-vector, currently ~ 1 nm⁻¹
- Iabel-free imaging of biological matter on the nano scale
- quantitative information channels available:

~ 1 GiB/s (uncompressed for analysis)

Typical scan parameters:

- ► 50×50 to 250×250 (sometimes 1000×1000)
- ► from 1 ms to 50 ms per point
- ▶ 10¹¹ pixels in less than half an hour

darkfield (how many photons are scattered? - measure the electron density), differential phase contrast (where are the photons scattered? - gradients), azimuthal and radial analyses - quantify **local ordering and structures**: e.g. study the actin cytoskeleton and understand the physical parameters of cells

Remedy: more cache = more CPUs = more boards

- STXM-cluster of individual systems
- 24 systems ("Heinzelmännchen"): Boards: ASUS H110M-A M.2 Intel Core i7-7700 @ 3.60 GHz CPUs: 8 GiB per node RAM:
- 1 control system ("Heinzelfrau"): Intel Core i7-8700 @ 3.20 GHz CPU: 64 GiB RAM: SSD: 1×Samsung 850 PRO 256 GiB

but latency too high

multi-core analysis faster than data can flow into CPU

24 Heinzelmännchen: analysing 1000×1000 images in ten minutes

dada18: web GUI and re-worked C-backend

- ► GUI to generate URLs for analysis
- browsing & pre-processing composites (2D array of 2D images) STXM analysis, different algorithms
- new: snapshots and parallel jobs

- ► dada, the *da*ta *da*emon [5]: centralised entry node to data
- ► do not worry about file name, folder structure, data format, compression et al. any longer
- reducing obstacles for new students

centralised entry node to analysis

- collecting our student's developments, so the next generation can use old methods on new data
- ► after testing: optimising performance
- ▶ web GUI and for the user, HTTP interface for software

cache: 5×Sandisk Ultra II 960 GiB

- network:
 - 2×10G uplink from Heinzelfrau, 1G per node; 10G extern to NFS server
- 96 cores, 192 MiB L3-Cache "cheap, but many"

under construction *now*

dadafs: network filesystem with multiple caches

- h001 ... h024 128 MiB RAM cache for metadata + recent data
- ► raw data accessible via NFS only visible on Heinzelfrau
- ► Heinzelmännchen mount via fuse-based dadafs-client
- ► local caching: recently accessed data, meta data, i.e. calls to stat(2)
- ► Heinzelfrau caching: dadafsd-server caches accessed file fragments on SSD (ZFS pool)
 - results: cached in aerospike DB

Parallel jobs via HTTP proxy

1?horz=255&vert=10,

User Proxy dada18 running on all web browser lighttpd as Heinzelmännchen load balancer dada18.html GUI to define load / process requests to analysis and and analyse h001 ... h024 parameters dada18.js sends results caching database generate URL - to user - to cache aerospike

► parallelisation is "easy": many independent Eiger images

- optimal strategy depends on scan geometry; e.g. stitching-STXM
- ► full scan is broken down into patches with individual URLs
- multiple requests to HTTP proxy, lighttpd acts as load balancer

patches are "glued" to full dataset

▶ all data can be imported from e.g. Matlab / Python / whatever by URLs URLs are "human-readable"

(distributed caching database) File Server NetApp 2×8 G SAN ≥ 150 TiB homer4b faster than NFS and Samba

References

fus CP -

heinzelfrau

(ワ

[1] M. Bernhardt, J.D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, T. Salditt:

3.4 TiB data cache,

128 GiB results cache,

60 GiB page cache

Anisotropic x-ray scattering and orientation fields in cardiac tissue cells, New Journal of Physics 19, 2017. [2] B. Weinhausen, J.F. Nolting, C. Olendrowitz, J. Langfahl-Klabes, M. Reynolds, T. Salditt, S. Köster: X-ray nano-diffraction on cytoskeletal networks, New Journal of Physics 14, 2012. [3] M. Priebe, M. Bernhardt, C. Blum, M. Tarantola, E. Bodenschatz, T. Salditt: Scanning X-Ray Nanodiffraction on Dictyostelium discoideum, Biophysical Journal 107, 2014). [4] J.-D. Nicolas, M. Bernhardt, M. Krenkel, C. Richter, S. Luther and T. Salditt:

Combined scanning X-ray diffraction and holographic imaging of cardiomyocytes, J. Appl. Crystallogr. 50, 2017. [5] M. Osterhoff: dada – a web-based 2D detector analysis tool, J. Phys: Conf. Ser. 849, 2017 (XRM 2016).

Acknowledgements

We thank our workshops (electrical and mechanical), especially Thomas Pingel, for support and construction.

We thank DESY Photon Science, especially André Rothkirch, for discussion and support during beamtime.