

VXDTF2 Status Report from Karlsruhe

F2F Tracking Meeting

Felix Metzner | 3rd February 2018

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Overview

Overlapping Tracks

More Memory and Run Time Issues

Other News

Two MC Tracks can overlap in 1 or more SVD Custer (hits).

The VXDTF2 forbids any overlap!

- \Rightarrow lower finding eff. expected
- \Rightarrow by factor 1/2

Overlap between two MC Tracks

Overlap in	1 Hit	2 Hits	> 2 Hits
Rate	3.6 %	1.3 %	0.5 %
Found	2.8 %	0.7 %	0.2 %

Two MC Tracks can overlap in 1 or more SVD Custer (hits).

The VXDTF2 forbids any overlap!	The	VXDTF2	forbids any	v overlap!
---------------------------------	-----	--------	-------------	------------

- ⇒ lower finding eff. expected
- \Rightarrow by factor 1/2

Same applies for the more unlikely overlaps in ≥ 2 hits.

A study was performed

- with 5k ↑(4S) Events w/ BKG
- to quantify the extend of the effect, and
- how allowing for an overlap can recover such tracks.

Overlap between two MC Tracks

Overlap in	1 Hit	2 Hits	> 2 Hits
Rate	3.6 %	1.3 %	0.5 %
Found	2.8 %	0.7 %	0.2 %

Allowing no Overlap

Overlap between two MC Tracks

Overlap in	1 Hit	2 Hits	> 2 Hits
Rate	3.6 %	1.3 %	0.5 %
Found	2.8 %	0.7 %	0.2 %
Fakes	2.15 %		

Allowing 1 Hit Overlap

Overlan between two MC Tracks

Overlap in	1 Hit	2 Hits	> 2 Hits
Rate	3.6 %	1.3 %	0.5 %
Found	3.2 %	0.8 %	0.3 %
Fakes		3.76 %	

Conclusion:

- Loss of roughly 1 % of tracks due to overlaps.
- Partly recovery of such tracks comes at high cost as fake rate increases significantly!
 - \Rightarrow I would refrain from allowing for overlaps for now.
 - \Rightarrow We should keep the option in mind.

Recent test runs for the Phase 2 dress rehearsal (BIIDP-330) and the HLT Trigger (BII-3059) showed

- a memory cosumption above the required limit of 2 GB in rare cases;
- run times of the order of a several seconds.

Both issues are caused by the **SegmentNetworkProducer** when our well known Freak Events occuring in Bhabha events are processed.

- ⇒ High momentum electron causes shower in the VXD sensors;
- ⇒ Many possible combinations of SVD Clusters;
- ⇒ SegmentNetworkProducer takes time to fill large containers...

The **rate and impact** of events with high combinatorics in the SegmentNetworkProducer are much **higher in Phase 2** runs.

⇒ might be caused by the SectorMap for Phase 2

Nonetheless, **precautions** should be taken to decrease the effect on performance of these events!

Originally a cut in the VXDTrackFinderCellOMat caused the event to be aborted in case the SegmentNetwork size was above a limit.

Now the problem already appears during in the **SegmentNetwork Producer!**

⇒ Already abort the event during the filling of the SegmentNetwork!

- ⇒ Check for SegmentNetwork size already during filling process!
 - \Rightarrow Memory allocated for the SegmentNetwork is limited to \sim 100 MB.
 - ⇒ Module run time is significantly reduced, but still of the order of a few seconds.
- ⇒ The Freak Events should be identified in an earlier stage.
 - ⇒ Evaluate size of HitNetwork (2 SpacePoint combinations).
 - ⇒ Perform cut and event abortion there...

Evaluation of the distibution of the HitNetwork size for

- 10k \(\cap(4S) \) events with BKG
- 10k Bhabha events with BKG (bh-wide default simulation)
- \Rightarrow Choosing cut at size of 2000
 - reduces run time to the order of ms for observed freak event!

Problems:

- Validation revealed also \(\U00a4(4S)\) event with size > 2000;
- Some problematic events slip through cut;
- Study based on wrong simulation setting!

⇒ Fine tuning necessary...

Other News

Deletion of the VXDTF2

- Most of the VXDTF V1 code is removed.
- Testbeam package was updated to VXDTF2 thanks to Thomas Lück
- Restructuring of the VXDTF2 directories still to be done

VXD Standalone Cosmics TF for B = 0 T

- Implemented a simple track finder for linear tracks from cosmics
- Assuming no other track in the event
- Based on Prinzipal Component Analysis ansatz
- A χ^2 value is calculated for quality estimation
- Some outliers/noise hits can be removed based on the χ^2 value