Phase II VXDTF2 readiness

T. Lück

F2F tracking meeting at KEK

February 3, 2018

outline

- Phase2 performance SVD tracking
- Phase2 performance full tracking (SVD+CDC)
- Sector map issues
- New VXDTF2 feature
- Tracking DQM module on HLT
- Summary

Phase2 tracking performance

- estimated on 10k Y(4S) events simulated with the Phase2 geometry
- nominal Phase2 bkg from Bkg-Campaign 16
- sector map used is the current default in the DB
- only patter recognition, i.e. no track fit performed
- normalized to MC tracks
- used nominal tracking validation scripts:
 - svdTrackingValidation.py
 - fullTrackingValidation.py

SVD only tracking Validation

- nightly build validation, Phase3 geometry, 0xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

SVD only tracking Validation

- nightly build validation, Phase3 geometry, 0xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

finding efficiency by $\boldsymbol{\theta}$ profile

SVD only tracking Validation

- nightly build validation, Phase3 geometry, 0xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

Full tracking Validation

- nightly build validation, Phase3 geometry, 1xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

finding efficiency by p, profile

Full tracking Validation

- nightly build validation, Phase3 geometry, 1xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

finding efficiency by $\boldsymbol{\theta}$ profile

Full tracking Validation

- nightly build validation, Phase3 geometry, 1xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

finding efficiency by $\boldsymbol{\phi}$ profile

- from ROI validatoin script (1000 events nominal Phase2 bkg)
- only around half of the events have ROIs

- strange feature in efficiency vs ndf distribution
- for SVD-only in phase2 expected 8 ndf
- a bug in the validation could explain a factor of 2
- nightly build validation, Phase3 geometry, 0xbkg
- 10k Y(4S), Phase2 geometry, 1x phase2 bkg

finding efficiency by ndf profile

- investigated the difference in layer number between outer and inner sector for segment filter
- expected that outer sector is always on outer layer
- not the case: possible issue with SectorMap

Quick fix for the issue

- agira issue: BII-3084
- reject filters when SectorMap is loaded
 - reject 2-hit filters with: outer layer number < inner layer number
 - reject 3-hit filters with: outer layer number < center layer number OR center layer number < inner layer number
- needs validation; final solution tuning SectorMap at training

- no track fit
- nightly build validation, Phase3 geometry, 0xbkg
- bugfix applied, my validation run, Phase3 geometry, 0xbkg

Tunable VXDTF2 filters

- new feature one can alter filter cuts
- useful during the beginning as it may be difficult to find tracks
- changes are applied to all filters contained in the SectorMap (several 10s thousand) at loading of the SectorMap
- example script: tracking/examples/AlterVXDTF2FilterCuts.py
- user has to provide the index of the cut variable and a string expression for a function (TF1)
- index can be found in the module description of SectorMapBootstrapModule
- python parameter for SectorMapBootstrapModule:
 - SMBSM1.param("threeHitFilterAdjustFunctions", [(0, "0"), (1, "x+3"), (15, "[0]")])
- NOTE: this is not meant as default option! Tuning of SectorMap should be the goal!

tracking DQM on HLT

- two agira issues on that: BII-3048 and BII-3061
- dedicated DQM module for running on HLT and monitored by (non-expert) shifters
- current proposal for generated plots:
 - RecoTracks found by CDC track finder: number of tracks; ω ; ϕ ; tan λ ; (of their momentum seed)
 - RecoTracks found by VXDTF2: number of tracks; ω ; ϕ ; tan λ ; (of their momentum seed)
 - RecoTracks found by by the CKF: number of tracks; ω ; ϕ ; tan λ ; (of their momentum seed)
 - number of fitted tracks provided as input to the PXD ROI finder
 - number of CDC hits used in the fitted track
 - number of SVD hits used in the fitted track
- a total of 15 plots
- something missing?

Summary

- tracking for Phase2 seems to work
- efficiencies for Phase2 look reasonable
- some issues with the SectorMap discoverd
- new feature for tuning filter cutsa
- tracking DQM on HLT

BACKUP

finding efficiency by $\boldsymbol{\theta}$ profile

outer - inner layer number

WriteSectorMap bool False threeMitFilterAdjustFunct list(tuple(int, str)) [] ions

twoHitFilterAdjustFunctio list(tuple(int, str)) []

If set to true at endRun write the SectorMaps to SectorMapsOutputFile. Vector of vectors containing expressions used to alter the 3-hit filters. The inner vector should contain exactly two strings. The first entry is interpreted as index (integer). The second entry is interpreted as function used to create a TF1. The variable to be altered will be assumed to be called "x" and in addition "[0]" can be used which will be interpreted as FullSecID of the static sector the filter is attached to. No other parameter is allowd. The structure of the 2-hit filter is as follows: (((((((((#19 <= DistanceInTime <= #20) AND (#17 <= Angle3DSimple <= #18)) AND (#15 <= CosAngleXY <= #16)) AND (#13 <= AngleRZSimple <= #14)) AND (CircleDist2IP <= #12)) AND (#10 <= DeltaSlopeRZ <= #11)) AND (#8 <= DeltaSlopeZoverS <= #9)) AND (#6 <= DeltaSoverZ <= #7)) AND (#4 <= HelixParameterFit <= #5)) AND (#2 <= Pt <= #3)) AND (#0 <= CircleRadius <= #1)) Example: [(1, "12"), (3, "sin(x)"), (4, "x + [0]")] feature only if you know what you are doing! Vector of vectors containing expressions used to alter the 2-hit filters. The inner vector should contain exactly two strings. The first entry is interpreted as index (integer). The second entry is interpreted as function used to create a TF1. The variable to be altered will be assumed to be called "x" and in addition one can use "[0]" can be used which will be interpreted as FullSecID of the static sector the filter is attached to. No other parameter is allowed. The structure of the 2-hit filter is as follows: DistanceInTimeUside <= #13) AND (#10 <= DistanceInTimeVside <= #11)) AND (#8 <= Distance3DSquared <= #9)) AND (#6 <= Distance2DXYSquared <= #7)) AND (#4 <= Distance1DZ <= #5)) AND (#2 <= SlopeRZ <= #3)) AND (#0 <= Distance3DNormed <= #1)) Example: [(1, "12"), (3, "sin(x)"), (4, "x + [0]")] PS: use this feature only if you know what you are doing!