General Atomic Target Fabrication Update

<u>Neil B. Alexander</u>, M.S. Wei, J.S. Jaquez, E. Del Rio, L.C. Carlson, E.M. Giraldez, E.L. Alfonso, A. Haid, B. Russ, M.P. Farrell

Presentation to EUCALL 29 May 2018

Work partially supported by General Atomics IR & D IFT-P2018-

General Atomics produces targets and target related equipment

Targets

- Hohlraums, capsules, flats, foams, high resolution 3D printed, ...
- Diagnostics
 - Fast x-ray diagnostics
- Target fielding equipment

GA's Target Fabrication and Characterization Advance Laboratory HED Science

• Many capabilities are needed to fabricate various classes of targets

Multiple capabilities are used to make a single target

Diverse Capabilities, Equipment, and Expertise at One Facility Improves Efficiency

IFT fabricates high precision capsules in plastic, diamond, and beryllium

IFT uses a wide variety of coating techniques

- Sputtering
 - Multi-gun
 - Ag, Al, Al₂O₃, Au, AuB, Ge, B, Be, B4C, BN, C, Cr, Co, Cu, Dy, Fe, Gd, Ir, Mg, Mn, Mo, Nb, Nd, Ni, Pd, Sc, Si, SiC, SiO₂, Sn, Ta, Te, Ti, TiO₂, U, V, W, Zn, Zr
- Electroplating: Au, Ag, Cu, ...
- Spin coating
- Physical Vapor Depositon
 - E-beam evaporator
 - Al, B, Cu, Fe, Ge, Si, Sn, Ta, V, Zr, ...
 - In development Lithium
- Atomic Layer Deposition (ALD)
 - 0.1 layer control, layer/15 sec, conformal
 - Pt, Al₂O₃, ZnO, TiN, TiO2 ...
- Diamond (HDC)
- Parylene-N
 - Polymer
- PE-CVD
 - CH and CD polymer doped as requested with Ge, Si, ...

Sputter coating line

ENERAL ATOMICS

Ultra thin coatings on multiple pane silicon window frames is parallel production method

Isochoric Heating Targets

• Micro-crystalline SiO₂ on 50 nm silicon nitride with silicon frame

- 96 targets per frame
- Facilitates a variety of <u>thin</u> coatings

We have a new formulation for low density C, H foam ("GACH")

- Densities as low as a few mg/cm³
- Sub-micron pore size
- Has also been deuterated (C, D)
- Can be laser machined
- Can be doped (e.g. chlorine)

GACH cast on sticks, first step to machining spheres

Deuterated

Chlorine doped

Bromine doped

• All metal foams can also be produced: Copper or Nickel

Robotic automation has been used to glue together flats and to mount targets

- Used Robot Assembly station to handle quantity
- Metal coated fused silica chips supplied by customer (2.5x2.5x0.1mm)
 - Supplied ~3 1/2 weeks prior to shot
 - Supplied with edge delamination of metal layer
- 50 µm thick Kapton ablators laser cut
 - Over or under size to miss delamination burr on chip
- Glued ablators (967) and mounted (1003) targets with
 - Combined UV and heat cure with Dymax 605
 - Opaque target need secondary cure

Parts Tray

Mounting Plate Location

Planar assembly robot has been upgraded to assemble stalks to pins

Planar assembly area

Planar assembly area

One robot handles both planar and stalk assembly

Machining learning combined with robotics to cull and classify defects automatically

Defect recognition reaches >90% accuracy

Example results from running the code

>10,000 encased micro-wire targets produced on cylindrical holders for LCLS experiments this past April

- X-ray beam probes Copper plasma just above target surface
- Target foils mounted on cylinders for diagnostic access
 - 3 Cylinders each with >3400 "collimator" micro-wire targets
 - Lithographic process
 - 9 Cylinders with plain foil Copper
 - 3 Cylinders with plain foil Iron

Lithography and micro-machining techniques used for production

Targets for laser generated proton isochoric heating of target foils

Additive manufacturing system using 2 photo polymerization (2PP) has sub micron resolution

- Pulsed lasers peak powers are intense enough to trigger 2 photon absorption
- Pulsed laser average powers are low enough to not destroy the sample

3D printing system being upgraded for taller structures and faster writing

- Top down illumination allows tall structures
- Extreme beam shaping profiles will allow parallel writing of voxels or z slices
- Long travel, fast positioning stage allow parts without stitching defects

Arbitrary laser beam profiles will allow entire Z-slice to be written at once with enough laser pulse energy. Currently can write 5 spots at once. (examples next slides were written with one spot)

Grazing incidence/plasma focusing/multi-tube array targets have been made by high resolution 3D printing/additive manufacturing

Gradient density foams have been made of large areas without stitching

Milli-meter sized parts have been made

No stitching defects

(Nanoscribe galvo limited to 140x140µm; large areas are stitched together)

2x2x0.25 mm gradient density foam block

CAD translator for printing more complicated parts

lhl

Gold and silver can be directly written on thin polymer films and other substrates in 2D

Split Ring Resonators

Gold Grid

Working on 3D

Pure Carbon Hydrogen polymer (CH) printing in development

GA on team that developed fastest x-ray imager (10ps gate)

Dilation X-ray Imager (DIXI)

Magnetic coils of drift tube

Capsules images

 Electron pulse from photocathode drift in magnetic field to stretch out (dilate) in time for read out by slower MCP

High capacity, high repetition rate target insertion is needed for radiation sources

- Target insertion at high repetition rate
 - Concept we are developing is based on film projector
 - Targets reeled on "film strips"; suspended on fibers or films

GA with affiliate Umwelt- und Ingenieurtechnik GmbH Dresden (UIT) are developing a supply system for targets for Europe

- UIT (GA affiliate) and GA are forming a partnership
- The future intended contact for target orders for Europe will be :
 - Dr Jens Schubert of UIT, GmbH
 - www.uit-gmbh.de
- Buy in Euro

Many types of targets, shields, and fiducials have been built for LCLS; most are 2D or 2 1/2 D in nature

Examples of items supplied for LCLS experiments

coated

Ø3mm, 50 um thick fused silica coated with aluminum

Quartz Taraets pyrolytic) w/100nm Al coating on laser facina thin edge

Glassy, Rigid, spacing Diamond multi-step, alued

Ø25.4mm Cylinders with >10.000

micro-dots (holes in resist on aluminum)

Arrav of polypropylene film windows above Ma (left), and MgO (right) chips

1.5 x 3 mm cross section

15 Al and parylene coated polystyrene pillars have total of 750 shot locations

2.5mm sauare 1.2 mm Ø 1.6 mm 50 mm 104 um 450 um Embedded Al 400 um 10 um 20 µm Iron oxide Ti/Cr allov micro-dot thick thick thick powder target taraets. 5 laver Robot arrays Edge mounted gold handle array Assembled and shield Mg and Aluminum steps mounted targets

• Questions?

Rep-rated facilities, like LCLS and HiBEF, use many targets in an experiment

- Rep-rated: less than 10 min./shot can use hundreds to thousand targets in experiment
- To keep shot rate up, avoid pumping down chamber for each target
 - Load locks
 - Put in arrays of targets onto target positioner in chamber
- MEC at LCLS typically uses arrays of targets
 - Design consideration: target design to reduce fratricide (one target shot damaging another)

- A "Target" is at least a defined feature
 - 1 plain foil shot 4 places counted

as 1 target

 1 foil with 4 features shot 4 places counted as 4 target

TSNA Proton focusing targets made by robotic metal forming of mandrels allows many partial gold hemi-shells to be produced

In hemi machining process, one is made at a time

