

Strategieworkshop Bonn May 2018

Physics opportunities for future high-energy proton colliders

Michael Krämer (RWTH Aachen University)

Workshop on **Future Hadron Colliders at the Energy Frontier**

14-15 December 2017 **DESY, Hamburg**

The German committees for elementary particle physics (KET). astroparticle physics (KAT) and hadron & nuclear physics (KHuK) are jointly organising a workshop on future hadron colliders at the energy frontier.

Programme Committee: Kerstin Borras (DESY, RWTH Aachen), Volker Büscher (Mainz), Gregor Herten (Freiburg), Frank Maas (Mainz), Silvia Masciocchi (GSI), Joachim Mnich (DESY), Andre Schöning (Heidelberg), Christian Weinheimer (Münster), Dieter Zeppenfeld (KIT)

rganizing Committee: Aanfred Fleischer, Michaela Grimm Thomas Schörner, Anita Teufel

> **Contact:** hadron-collider-ws@desy.de

KHK

http://hadroncollisions.desy.d

ASH HI!

Workshop on **Future Hadron Colliders at the Energy Frontier**

14-15 December 2017

A ▲ ▶ ▶ iCal export More ▼			Europe/Berlin 👻	English - Login
Workshop on Fut	ure Ha	adron Colliders at the Energy Frontier		
14-15 December 2017 DESY Hamburg Europe/Berlin timezone				
Overview Timetable	< Thu 14	4/12 Fri 15/12 All days	led view Filter	
Registration Registration Form Participant List Programme committee	12:00	Registration	12:00 - 13:00	
How to get to DESY? Accommodation Workshop poster Workshop photo	13:00	Welcome Auditorium, DESY Hamburg New particle production and BSM physics at future hadron colliders (theory)	Dr. Pedro SCHWALLER	
Support Madron-collider-ws@d	14:00	Auditorium, DESY Hamburg Discussion Auditorium, DESY Hamburg Indirect effects of BSM physics in electroweak and strong processes: EFT, underlying models and precision measurements (theory)	13:05 - 13:35 13:35 - 13:50 Prof. Andreas WEILER	
	11.00	Auditorium, DESY Hamburg Discussion Auditorium, DESY Hamburg Status FCC study, including HE-LHC	13:50 - 14:20 14:20 - 14:35 Dr. Michael BENEDIKT	
	15:00	Auditorium, DESY Hamburg	14:35 - 15:05	

Future high-energy hadron colliders

HE-LHC

Future high-energy hadron colliders

parameter	FCC-hh		HE-LHC	(HL) LHC
collision energy cms [TeV]	100		27	14
dipole field [T]	16		16	8.3
circumference [km]	100		27	27
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1 (0.5)		2.2	(2.2) 1.15
bunch spacing [ns]	25 (12.5)		25 (12.5)	25
norm. emittance γε _{x,y} [μm]	2.2 (2.2)		2.5 (1.25)	(2.5) 3.75
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55
Iuminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
peak #events / bunch Xing	170	1000 (500)	800 (400)	(135) 27
stored energy / beam [GJ]	8.4		1.4	(0.7) 0.36
SR power / beam [kW]	2400		100	(7.3) 3.6
transv. emit. damping time [h]	1.1		3.6	25.8
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40

M. Benedikt

Future high-energy hadron colliders

technical schedule defined by magnets program and by CE

- \rightarrow earliest possible physics starting dates:
- FCC-hh: 2043
- FCC-ee: 2039
- HE-LHC: 2040 (with HL-LHC stop at LS5 / 2034)

HE-LHC design & construction

CERN Yellow Report CERN-2017-003-M

https://arxiv.org/abs/1710.06353

- <u>SM processes</u>
- Higgs physics and EW symmetry breaking
- BSM phenomena
- Heavy Ion physics at FCC-hh
- Physics with the FCC-hh injectors

See also FCC week 2018: <u>https://indico.cern.ch/event/656491/</u>

- Explore electroweak symmetry breaking
- Search for new particles
- Probe Standard Model dynamics

Explore electroweak symmetry breaking

$$\mathcal{L}_{\rm SM} \supset -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 - Y^{ij} \overline{\psi}_L^i H \psi_R^j$$

naturalness?vacuum stability?flavour structure?portal to dark sector?electroweak phase transition?mass hierarchies?

Search for new particles

WIMP dark matter?

Flavour anomalies?

+ theoretically well motivated BSM scenarios such as supersymmetry, composite Higgs, ...

Probe Standard Model dynamics

- Explore electroweak symmetry breaking
- Search for new particles
- Probe Standard Model dynamics

- \rightarrow Precision (exp. & theory)
- → Energy/mass reach
- → Diverse searches (subtle and/or novel signatures)

Consider an EFT analysis of BSM physics

$$\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} \mathcal{O}_i \implies \sigma = \sigma_{\text{SM}} \left(1 + \mathcal{O} \left(\frac{E^2}{\Lambda^2} \right) + \ldots \right)$$

Consider an EFT analysis of BSM physics

$$\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} \mathcal{O}_i \implies \sigma = \sigma_{\text{SM}} \left(1 + \mathcal{O} \left(\frac{E^2}{\Lambda^2} \right) + \ldots \right)$$

Inclusive Higgs production:

$$\delta\sigma \sim \frac{m_H^2}{\Lambda^2} \approx 2\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \rightarrow \delta\sigma \approx 5\% \text{ probes } \Lambda \approx 500 \,\text{GeV}$$

Consider an EFT analysis of BSM physics

$$\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} \mathcal{O}_i \implies \sigma = \sigma_{\text{SM}} \left(1 + \mathcal{O} \left(\frac{E^2}{\Lambda^2} \right) + \ldots \right)$$

Inclusive Higgs production:

 $\delta\sigma \sim \frac{m_H^2}{\Lambda^2} \approx 2\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \rightarrow \delta\sigma \approx 5\% \text{ probes } \Lambda \approx 500 \,\text{GeV}$

Production at large p_{\perp} :

 $\delta\sigma \sim \frac{p_{\perp}^2}{\Lambda^2} \to \delta\sigma \approx 20\%$ and $p_{\perp} \approx 500 \,\text{GeV}$ probe $\Lambda \approx 1 \,\text{TeV}$

- Higgs physics
- WIMP dark matter
- Flavour anomalies

15 ab⁻¹ @ 27 TeV

 $\sigma(H)/\sigma(H)_{LHC} \approx 2.5$ $\sigma(HH)/\sigma(HH)_{LHC} \approx 5$

Indicative precision in Higgs couplings

Mangano, Azzi, D'Onofrio, Mccullough

Statistical uncertainties only

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings
$HH \rightarrow b\overline{b}\gamma\gamma$	3%	$\lambda_3 \in [0.97, 1.03]$
$HH \to b \overline{b} b \overline{b}$	5%	$\lambda_3 \in [0.9, 1.5]$
$HH \to b \overline{b} 4 \ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$
$HH \to b \bar{b} \ell^+ \ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$
$HH \to b \bar{b} \ell^+ \ell^- \gamma$	_	_
$HHH \to b\bar{b}b\bar{b}\gamma\gamma$	O(100%)	$\lambda_4 \in [-4, +16]$

arXiv:1802.04319 [hep-ph]

Statistical uncertainties only

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings
$HH ightarrow b\overline{b}\gamma\gamma$	3%	$\lambda_3 \in [0.97, 1.03]$
$HH ightarrow b\overline{b}b\overline{b}$	5%	$\lambda_3 \in [0.9, 1.5]$
$HH ightarrow b\overline{b}4\ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$
$HH \to b \bar{b} \ell^+ \ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$
$HH \to b \overline{b} \ell^+ \ell^- \gamma$	_	—
$HHH \rightarrow b\bar{b}b\bar{b}\gamma\gamma$	O(100%)	$\lambda_4 \in [-4, +16]$

 $\delta \lambda_3 \approx \begin{cases} 30\% \text{ (HE-LHC)} \\ 10\% \text{ (FCC-hh)} \end{cases}$

arXiv:1408.4371 [astro-ph.IM]

arXiv:1408.4371 [astro-ph.IM]

arXiv:1408.4371 [astro-ph.IM]

arXiv:1404.0682 [hep-ph]

arXiv:1404.0682 [hep-ph]

Disappearing track searches crucial

arXiv:1404.0682 [hep-ph]

The physics programme of a future high-energy proton collider should not be considered an extension of the LHC programme.

The physics programme of a future high-energy proton collider should not be considered an extension of the LHC programme.

A 100 TeV proton collider would journey into uncharted waters, exploring nature in the laboratory at unprecedented energies.

Facility	Original purpose, Expert Opinion	Discovery with Precision Instrument
P.S. CERN (1960)	π N interactions	Neutral Currents -> Z,W
AGS BNL (1960)	π N interactions	Two kinds of neutrinos Time reversal non-symmetry charm quark
FNAL Batavia (1970)	Neutrino Physics	bottom quark top quark
SLAC Spear (1970)	ep, QED	Partons, charm quark tau lepton
ISR CERN (1980)	рр	Increasing pp cross section
PETRA DESY (1980)	top quark	Gluon
Super Kamiokande (2000)	Proton Decay	Neutrino oscillations
Telescopes (2000)	SN Cosmology	Curvature of the universe Dark energy

Slide by Shipsey/Ting

The physics programme of a future high-energy proton collider should not be considered an extension of the LHC programme.

A 100 TeV proton collider would journey into uncharted waters, exploring nature in the laboratory at unprecedented energies.

There is no guarantee for a discovery.

However, there is a tremendous potential to **explore** some of the most fundamental questions in physics (science), such as the **origin of electroweak symmetry breaking**, the **nature of dark matter**, the origin of the **matter-antimatter asymmetry**, the structure of **space-time symmetries**, and many more.