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Little bangs in the laboratory
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A great challenge

quantum fields at finite energy density and temperature

fundamental gauge theory: QCD

strongly interacting

non-equilibrium dynamics

experimentally driven field of research

big motivation for theory development
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by microscopic
properties in LQCD
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0

equation for fluid velocity uµ

(ε+ p+ πbulk)uµ∇µuν + ∆νµ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0

equation for particle number density n

uµ∂µn+ n∇µuµ +∇µνµ = 0
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Constitutive relations

Second order relativistic fluid dynamics:

equation for shear stress πµν

τshear P
ρσ
αβ u

µ∇µπαβ + πρσ + 2η P ρσαβ ∇αuβ + . . . = 0

with shear viscosity η(T, µ)

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + πbulk + ζ ∇µuµ + . . . = 0

with bulk viscosity ζ(T, µ)

equation for baryon diffusion current νµ

τheat ∆α
β u

µ∇µνβ + να + κ

[
nT

ε+ p

]2

∆αβ∂β
( µ
T

)
+ . . . = 0

with heat conductivity κ(T, µ)
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Thermodynamics of QCD
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Figure S7: The lattice result for the 2+1+1 flavor QCD pressure together with the fitted value of the
g6 order. We included the charm mass at tree-level. The perturbative result agrees with the data from
about 500 MeV temperature. Using the same fitted coe�cient we also calculated the e↵ect of the bottom
quark with the same method. The blue curve shows the EoS including the bottom contribution.

S4.1 The 2+1+1 flavor QCD equation of state

Now we show the complete result obtained from nf = 2 + 1 + 1 lattice QCD. Figure S8 depicts the trace
anomaly (left panel) and pressure (right panel). For comparison the 2+1 flavor results are also shown.

Plotting p/T 4 (which is the normalized free energy density), we can compare our result to other
approaches. At low temperatures the Hadron Resonance Gas model (using the 2014 PDG spectrum) gives
a good description of the lattice data. This was already observed in Ref. [S18].

In Ref. [S18] we gave a simple parametrization for the 2+1 flavor equation of state. Here we update
the 2+1 flavor parameters and provide a parametrization that covers the 100-1000 MeV temperature
range and describes the 2+1+1 lattice data, i.e. including the e↵ect of the charm quark. As before, the
parametrizing formula reads

I(T )

T 4
= exp(�h1/t � h2/t

2) ·
✓

h0 + f0
tanh(f1 · t + f2) + 1

1 + g1 · t + g2 · t2

◆
, (S11)

with t = T/200 MeV. The parameters are given in Table. S1, the resulting curves are shown in Fig. S8.
For completeness the nf = 2 + 1 parametrization is also shown.
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Figure S8: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories in our parametriza-
tion Eq. (S11). We also show the Hadron Resonance Gas model’s prediction for comparison.
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We show the leading order coefficient χB2 ðTÞ in Fig. 2
and the NLO (χB4 ) and NNLO (χB6 ) coefficients divided by
χB2 ðTÞ in Fig. 3. The left-hand part of Fig. 2 shows the
leading order contribution χB2 in the entire temperature
interval used in the current analysis. For the LO expansion
coefficients, we also used data from simulations on 483 ×
12 lattices. Here, we used existing data for ml=ms ¼ 1=20
[3] and generated new ensembles forml=ms ¼ 1=27 at nine
temperature values below T ¼ 175 MeV. Furthermore, we
used data on 643 × 16 lattices at a corresponding set of low
temperature values. These data are taken from an ongoing
calculation of higher-order susceptibilities performed by
the HotQCD Collaboration.2 This allowed us to update the
continuum extrapolation for χB2 given in [20]. The new
continuum extrapolation shown in Fig. 2 is consistent with
our earlier results, but has significantly smaller errors in the

low temperature region. In the right-hand part of this figure
we compare the continuum extrapolated lattice QCD data
for χB2 with HRG model calculations. It is obvious that the
continuum-extrapolated QCD results overshoot results
obtained from a conventional, noninteracting HRG model
calculations with resonances taken from the particle data
tables (PDG-HRG) and treated as pointlike excitations. We
therefore compare the QCD results also with a HRG model
that includes additional strange baryons, which are not
listed in the PDG but are predicted in quark models and
lattice QCD calculations. We successfully used such an
extended HRG model (QM-HRG) in previous calculations
[5,6]. As can be seen in Fig. 2 (left), continuum extrapo-
lated results for χB2 agree well with QM-HRG calculations.
As can be seen in the left-hand part of Fig. 3, the ratio

χB4 =χ
B
2 approaches unity with decreasing temperature,

but is small at high temperatures where the leading
order correction is large. The relative contribution of the
NLO correction thus is largest in the hadronic phase, where
χB4 =χ

B
2 ≃ 1. For temperatures T ≲ 155 MeV, we find
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FIG. 2. The leading order (Oðμ2BÞ) correction to the pressure calculated at zero baryon chemical potential. The left-hand figure shows the
leading order correction in a large temperature range. The right-hand part of the figure shows an enlarged view into the low temperature
region. In addition to the continuum extrapolation of the lattice QCD results, we also show results fromHRGmodel calculations based on
all hadron resonances listed by the particle data group (PDG-HRG) and obtained in quark model calculations (QM-PDG).
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FIG. 3. (Left) The ratio of fourth- and second-order cumulants of net-baryon number fluctuations (χB4 =χ
B
2 ) versus temperature. (Right)

Same as the left-hand side, but for the ratio of sixth- and second-order cumulants of net-baryon number fluctuations (χB6 =χ
B
2 ). The boxes

indicate the transition region, Tc ¼ ð154 $ 9Þ MeV. Grey bands show continuum estimate.

2We thank the HotQCD Collaboration for providing access to
the second-order quark number susceptibilities.

QCD EQUATION OF STATE TO Oðμ6BÞ … PHYSICAL REVIEW D 95, 054504 (2017)

054504-7

[Borsányi et al. (2016)], similar Bazavov et al. (2014) [Bazavov et al. (2017), similar Bellwied et al. (2015)]

thermodynamic equation of state p(T ) rather well understood now

also moments of conserved charges like

χB
2 =
〈(NB −NB̄)2〉

V T 3

and higher order understood

progress in computing power
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Quantum fields and information

surprising relations between quantum field theory and information theory

well understood in thermal equilibrium

currently investigated out-of-equilibrium

fluid dynamics / entanglement entropy / black hole physics (AdS/CFT)

shear viscosity to entropy density ratio η/s ≥ ~/(4πkB)
[Kovtun, Son, Starinets (2003)]

Figure 3: The holographic calculation of entanglement entropy via AdS/CFT.

the deficit angle δ localized on a codimension two surface γA. This is clearly true in the

three-dimensional pure gravity as the solution to the Einstein equation should be locally

the same as AdS3. However, this is not trivially obvious in higher dimensions. Under this

assumption, the Ricci scalar behaves like a delta function

R = 4π(1 − n)δ(γA) + R(0) , (3.4)

where δ(γA) is the delta function localized on γA, δ(γA) = ∞ for x ∈ γA whereas δ(γA) = 0

otherwise, and R(0) is that of the pure AdSd+2. Then we plug this in the supergravity

action

SAdS = − 1

16πG
(d+2)
N

∫

M

dxd+2√g(R + Λ) + · · · , (3.5)

where we only make explicit the bulk Einstein-Hilbert action. This is because the other

parts omitted in the above such as kinetic terms of scalars, lead to extensive terms which

are proportional to n and are canceled in the ratio (2.20). Now the bulk to boundary

relation (3.2) equates the partition function of CFT with the one of AdS gravity. Thus

we can holographically calculate the entanglement entropy SA as follows

SA = − ∂

∂n
log Trρn

A|n=1 = − ∂

∂n

[
(1 − n)Area(γA)

4Gd+2
N

]

n=1

=
Area(γA)

4Gd+2
N

. (3.6)

The action principle in the gravity theory requires that γA is the minimal area surface. In

this way, we reproduced our holographic formula (3.3) [27]. Notice that the presence of

non-trivial minimal surfaces is an well-established property of asymptotically AdS spaces.

15

QCD strings and entanglement
[Berges, Floerchinger, Venugopalan (2017)]

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

Lund model (Pythia)

di↵erent regions in a string are entangled

subinterval A has reduced density matrix of mixed form even if ⇢ is pure

⇢A = TrB{⇢}

characterization by entanglement entropy

SA = �TrA {⇢A ln(⇢A)}

could this lead to thermal-like e↵ects?
29 / 36

[Ryu, Takayanagi (2006)] [Berges, Floerchinger, Venugopalan (2017)]
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Non-central collisions

pressure gradients larger in reaction plane

leads to larger fluid velocity in this direction

more particles fly in this direction

can be quantified in terms of elliptic flow v2

particle distribution

dN

dφ
=
N

2π

[
1 + 2

∑
m

vm cos (m (φ− ψR))

]

symmetry φ→ φ+ π implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function

normalized two-particle correlation function

C(φ1, φ2) =
〈 dN
dφ1

dN
dφ2
〉events

〈 dN
dφ1
〉events〈 dNdφ2

〉events

= 1 + 2
∑
m

v2
m cos(m (φ1 − φ2))

surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

deviations from symmetric initial energy density distribution from
event-by-event fluctuations

one example is Glauber model

-10 -5 0 5 10

-5

0

5

10 / 26



Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid

fluctuating initial state
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Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

detailed correlation functions are compared to theory

can lead to detailed understanding of evolution
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The dark matter fluid

high energy nuclear collisions

LQCD → fluid properties

late time cosmology

fluid properties → Ldark matter

until direct detection of dark matter it can only be observed via gravity

Gµν = 8πGN T
µν

so all we can access is
Tµνdark matter

strong motivation to study heavy ion collisions and cosmology together!
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Fluid dynamic simulations

second order relativistic fluid dynamics solved numerically

fluctuating initial conditions

η/s is varied to find experimentally favored value

differential information in centrality and pT

the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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[Gale, Jeon, Schenke, Tribedy, Venugopalan (2013)]
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Collective behavior in large and small systems
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flow coefficients from higher order cumulants v2{n} agree:
→ collective behavior

elliptic flow signals also in pPb and pp !

can fluid approximation work for pp collisions?
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Questions and puzzles

how universal are collective flow and fluid dynamics?
as a limit of kinetic theory / perturbation theory / multi-parton interactions
non-perturbative understanding / entanglement

what determines density distribution of a proton?
constituent quarks or interacting gluon cloud?
generalized parton distribution functions

what about more elementary collision systems?

PbPbPb p p p p e- e+ e-

role of electromagnetic fields and vorticity for fluid dynamics

role of quantum anomalies (e. g. Chiral Magnetic Effect)
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Chemical freeze-out

[Andronic, Braun-Munzinger, Redlich, Stachel (2017)]

chemical freeze-out close to chiral crossover transition for large
√
s

chiral transition should be visible in higher moments 〈(NB −NB̄)n〉
traces of the evolving chiral condensate / pion condensate ?

more insights at large µB expected from FAIR
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Quarkonium and how it gets modified

The CMS Collaboration / Physics Letters B 770 (2017) 357–379 359

3.2. Muon selection

Muons are reconstructed using a global fit to a track in the 
muon detectors that is matched to a track in the silicon tracker. 
The offline muon reconstruction algorithm used for the PbPb data 
has been improved relative to that used previously [18]. The 
efficiency has been increased by running multiple iterations in 
the pattern recognition step, raising the number of reconstructed 
ϒ(1S) candidates by approximately 35%. Background muons from 
cosmic rays and heavy-quark semileptonic decays are rejected by 
imposing a set of selection criteria on each muon track. These 
criteria are based on previous studies of the performance of the 
muon reconstruction algorithm [28]. The track is required to have 
a hit in at least one pixel detector layer, and a respective transverse 
(longitudinal) distance of closest approach of less than 3 (15) cm 
from the measured primary vertex, primarily to reject cosmic ray 
muons and muons from hadron decays in flight. To ensure a good 
pT measurement, more than 10 hits are requested in the tracker, 
and the χ2 per number of degrees of freedom of the trajectory 
fits is limited to be smaller than 10 when using the silicon tracker 
and the muon detectors, and smaller than 4 when using only the 
tracker. Pairs of oppositely charged muons are considered when 
the χ2 fit probability of the tracks originating from a common ver-
tex exceeds 1%.

For the ϒ(2S) and ϒ(3S) analyses, the transverse momentum 
of each muon (pµ

T ) is required to be above 4 GeV/c, as in previ-
ous publications [15,17,18], while one of them is relaxed down to 
3.5 GeV/c for the ϒ(1S) analysis. Reducing this pT threshold raises 
the ϒ(1S) yield by approximately 40%, and its statistical signifi-
cance by up to 50%, depending on the pT and y of the dimuon 
system. Relaxing the criterion on the second muon was also con-
sidered then discarded, since it did not significantly raise the ac-
ceptance for the ϒ states. The resulting invariant mass distribu-
tions are shown on Fig. 1 for the entire pp and PbPb data samples.

4. Analysis

4.1. Signal extraction

To extract the ϒ(1S), ϒ(2S), and ϒ(3S) meson yields, unbinned 
maximum likelihood fits to the µ+µ− invariant mass spectra are 
performed between 7.5 and 14 GeV/c2. The results for the pT-, y-
and centrality-integrated case are displayed as solid lines on Fig. 1. 
Each ϒ resonance is modelled by the sum of two Crystal Ball (CB) 
functions [29] with common mean but different widths to account 
for the pseudorapidity dependence of the muon momentum res-
olution. The CB functions are Gaussian resolution functions with 
the low-side tail replaced by a power law describing final-state ra-
diation. This choice was guided by simulation studies, as well as 
analyses of large pp event samples collected at 

√
s = 7 TeV [30]. 

Given the relatively large statistical uncertainties, the only signal 
model parameters that are left free in the fit are the mean of the 
ϒ(1S) peak, and the ϒ(1S), ϒ(2S) and ϒ(3S) meson yields. The 
other parameters, such as the width of the ϒ(1S) peak are fixed 
in every bin to the corresponding value obtained from simulations. 
The mean and width of the CB functions describing the ϒ(2S) and 
ϒ(3S) peaks are set by the fitted ϒ(1S) peak mean and the fixed 
ϒ(1S) width, respectively, multiplied by the world-average mass 
ratio [31]. The parameters describing the tail of the CB function 
are fixed to values obtained from simulations, kept common in 
the three ϒ states, then allowed to vary when computing the as-
sociated systematic uncertainties. The background distribution is 
modelled by an exponential function multiplied by an error func-
tion (the integral of a Gaussian) describing the low-mass turn-on, 
with all parameters left free in the fit.

Fig. 1. Dimuon invariant mass distributions in pp (top) and centrality-integrated 
PbPb (bottom) data at √sNN = 2.76 TeV, for muon pairs having one pT greater than 
4 GeV/c and the other greater than 3.5 GeV/c. The solid (signal + background) and 
dashed (background only) lines show the result of fits described in the text.

With one muon having pT greater than 4 GeV/c and the other 
greater than 3.5 GeV/c, this fitting procedure results in ϒ(1S) me-
son yields and statistical uncertainties of 2534 ± 76 and 5014 ± 87
in centrality-integrated PbPb and pp collisions, respectively. With 
both muons’ transverse momenta above 4 GeV/c, it yields 173 ± 41
for ϒ(2S) and 7 ± 38 for ϒ(3S) (hence unobserved) in PbPb colli-
sions, and 1214 ± 51 for ϒ(2S) and 618 ± 44 for ϒ(3S) states in 
pp collisions.

4.2. Acceptance and efficiency

To correct yields for acceptance and efficiency in the two 
data samples, the three ϒ states have been simulated using the
pythia 6.412 generator [32] and embedded in PbPb events sim-
ulated with hydjet 1.8 [33], producing Monte Carlo (MC) events 
with the same settings as in Ref. [18], including radiative tails 
handled by photos [34]. Acceptance is defined as the fraction of 
ϒ in the |y| < 2.4 range that decay into two muons, each with 
|ηµ| < 2.4, and pµ2

T > 4 GeV/c and pµ1
T > 3.5 or 4 GeV/c for the 

ϒ(1S) and ϒ(2S)/ϒ(3S) states, respectively. For the ϒ(1S) state, 
the acceptance over the analyzed phase space averages to 35%. For 
all three ϒ states, the acceptance is constant over most of the ra-
pidity range, with a drop at large |y|. When the ϒ meson has 
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T ) is required to be above 4 GeV/c, as in previ-
ous publications [15,17,18], while one of them is relaxed down to 
3.5 GeV/c for the ϒ(1S) analysis. Reducing this pT threshold raises 
the ϒ(1S) yield by approximately 40%, and its statistical signifi-
cance by up to 50%, depending on the pT and y of the dimuon 
system. Relaxing the criterion on the second muon was also con-
sidered then discarded, since it did not significantly raise the ac-
ceptance for the ϒ states. The resulting invariant mass distribu-
tions are shown on Fig. 1 for the entire pp and PbPb data samples.
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To extract the ϒ(1S), ϒ(2S), and ϒ(3S) meson yields, unbinned 
maximum likelihood fits to the µ+µ− invariant mass spectra are 
performed between 7.5 and 14 GeV/c2. The results for the pT-, y-
and centrality-integrated case are displayed as solid lines on Fig. 1. 
Each ϒ resonance is modelled by the sum of two Crystal Ball (CB) 
functions [29] with common mean but different widths to account 
for the pseudorapidity dependence of the muon momentum res-
olution. The CB functions are Gaussian resolution functions with 
the low-side tail replaced by a power law describing final-state ra-
diation. This choice was guided by simulation studies, as well as 
analyses of large pp event samples collected at 

√
s = 7 TeV [30]. 

Given the relatively large statistical uncertainties, the only signal 
model parameters that are left free in the fit are the mean of the 
ϒ(1S) peak, and the ϒ(1S), ϒ(2S) and ϒ(3S) meson yields. The 
other parameters, such as the width of the ϒ(1S) peak are fixed 
in every bin to the corresponding value obtained from simulations. 
The mean and width of the CB functions describing the ϒ(2S) and 
ϒ(3S) peaks are set by the fitted ϒ(1S) peak mean and the fixed 
ϒ(1S) width, respectively, multiplied by the world-average mass 
ratio [31]. The parameters describing the tail of the CB function 
are fixed to values obtained from simulations, kept common in 
the three ϒ states, then allowed to vary when computing the as-
sociated systematic uncertainties. The background distribution is 
modelled by an exponential function multiplied by an error func-
tion (the integral of a Gaussian) describing the low-mass turn-on, 
with all parameters left free in the fit.

Fig. 1. Dimuon invariant mass distributions in pp (top) and centrality-integrated 
PbPb (bottom) data at √sNN = 2.76 TeV, for muon pairs having one pT greater than 
4 GeV/c and the other greater than 3.5 GeV/c. The solid (signal + background) and 
dashed (background only) lines show the result of fits described in the text.

With one muon having pT greater than 4 GeV/c and the other 
greater than 3.5 GeV/c, this fitting procedure results in ϒ(1S) me-
son yields and statistical uncertainties of 2534 ± 76 and 5014 ± 87
in centrality-integrated PbPb and pp collisions, respectively. With 
both muons’ transverse momenta above 4 GeV/c, it yields 173 ± 41
for ϒ(2S) and 7 ± 38 for ϒ(3S) (hence unobserved) in PbPb colli-
sions, and 1214 ± 51 for ϒ(2S) and 618 ± 44 for ϒ(3S) states in 
pp collisions.

4.2. Acceptance and efficiency

To correct yields for acceptance and efficiency in the two 
data samples, the three ϒ states have been simulated using the
pythia 6.412 generator [32] and embedded in PbPb events sim-
ulated with hydjet 1.8 [33], producing Monte Carlo (MC) events 
with the same settings as in Ref. [18], including radiative tails 
handled by photos [34]. Acceptance is defined as the fraction of 
ϒ in the |y| < 2.4 range that decay into two muons, each with 
|ηµ| < 2.4, and pµ2

T > 4 GeV/c and pµ1
T > 3.5 or 4 GeV/c for the 

ϒ(1S) and ϒ(2S)/ϒ(3S) states, respectively. For the ϒ(1S) state, 
the acceptance over the analyzed phase space averages to 35%. For 
all three ϒ states, the acceptance is constant over most of the ra-
pidity range, with a drop at large |y|. When the ϒ meson has 

µ+µ− mass spectrum in the range of Υ(1S), Υ(2S) and Υ(3S)

all Υ states are suppressed by medium effects, excited states even more

more detailed understanding of heavy quark bound states in a medium

also at LHC: regeneration and flow of charmed mesons
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Jet quenching

tended to illustrate the effect of the heavy ion background
on jet reconstruction, not any underlying physics process.
The dijet asymmetry in peripheral lead-lead events is
similar to that in both proton-proton and simulated events;
however, as the events become more central, the lead-lead
data distributions develop different characteristics, indicat-
ing an increased rate of highly asymmetric dijet events.
The asymmetry distribution broadens; the mean shifts to
higher values; the peak at zero asymmetry is no longer
visible; and for the most central events a peak is visible at
higher asymmetry values (asymmetries larger than 0.6 can
exist only for leading jets substantially above the kinematic
threshold of 100 GeV transverse energy). The !! distri-
butions show that the leading and second jets are primarily
back-to-back in all centrality bins; however, a systematic
increase is observed in the rate of second jets at large
angles relative to the recoil direction as the events become
more central.

Numerous studies have been performed to verify that the
events with large asymmetry are not produced by back-
grounds or detector effects. Detector effects primarily in-
clude readout errors and local acceptance loss due to dead
channels and detector cracks. All of the jet events in this
sample were checked, and no events were flagged as
problematic. The analysis was repeated first by requiring
both jets to be within j"j< 1 and j"j< 2, to see if there is
any effect related to boundaries between the calorimeter
sections, and no change to the distribution was observed.
Furthermore, the highly asymmetric dijets were not found
to populate any specific region of the calorimeter, indicat-

ing that no substantial fraction of produced energy was lost
in an inefficient or uncovered region.
To investigate the effect of the underlying event, the jet

radius parameter R was varied from 0.4 to 0.2 and 0.6 with
the result that the large asymmetry was not reduced. In
fact, the asymmetry increased for the smaller radius, which
would not be expected if detector effects are dominant. The
analysis was independently corroborated by a study of
‘‘track jets,’’ reconstructed with inner detector tracks of
pT > 4 GeV using the same jet algorithms. The inner
detector has an estimated efficiency for reconstructing
charged hadrons above pT > 1 GeV of approximately
80% in the most peripheral events (the same as that found
in 7 TeV proton-proton operation) and 70% in the most
central events, due to the approximately 10% occupancy
reached in the silicon strips. A similar asymmetry effect is
also observed with track jets. The jet energy scale and
underlying event subtraction were also validated by corre-
lating calorimeter and track-based jet measurements.
The missing ET distribution was measured for minimum

bias heavy ion events as a function of the total ET deposited
in the calorimeters up to about "ET ¼ 10 TeV. The reso-
lution as a function of total ET shows the same behavior as
in proton-proton collisions. None of the events in the jet-
selected sample was found to have an anomalously large
missing ET .
The events containing high-pT jets were studied for the

presence of high-pT muons that could carry a large fraction
of the recoil energy. Fewer than 2% of the events have a
muon with pT > 10 GeV, potentially recoiling against the
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tended to illustrate the effect of the heavy ion background
on jet reconstruction, not any underlying physics process.
The dijet asymmetry in peripheral lead-lead events is
similar to that in both proton-proton and simulated events;
however, as the events become more central, the lead-lead
data distributions develop different characteristics, indicat-
ing an increased rate of highly asymmetric dijet events.
The asymmetry distribution broadens; the mean shifts to
higher values; the peak at zero asymmetry is no longer
visible; and for the most central events a peak is visible at
higher asymmetry values (asymmetries larger than 0.6 can
exist only for leading jets substantially above the kinematic
threshold of 100 GeV transverse energy). The !! distri-
butions show that the leading and second jets are primarily
back-to-back in all centrality bins; however, a systematic
increase is observed in the rate of second jets at large
angles relative to the recoil direction as the events become
more central.

Numerous studies have been performed to verify that the
events with large asymmetry are not produced by back-
grounds or detector effects. Detector effects primarily in-
clude readout errors and local acceptance loss due to dead
channels and detector cracks. All of the jet events in this
sample were checked, and no events were flagged as
problematic. The analysis was repeated first by requiring
both jets to be within j"j< 1 and j"j< 2, to see if there is
any effect related to boundaries between the calorimeter
sections, and no change to the distribution was observed.
Furthermore, the highly asymmetric dijets were not found
to populate any specific region of the calorimeter, indicat-

ing that no substantial fraction of produced energy was lost
in an inefficient or uncovered region.
To investigate the effect of the underlying event, the jet

radius parameter R was varied from 0.4 to 0.2 and 0.6 with
the result that the large asymmetry was not reduced. In
fact, the asymmetry increased for the smaller radius, which
would not be expected if detector effects are dominant. The
analysis was independently corroborated by a study of
‘‘track jets,’’ reconstructed with inner detector tracks of
pT > 4 GeV using the same jet algorithms. The inner
detector has an estimated efficiency for reconstructing
charged hadrons above pT > 1 GeV of approximately
80% in the most peripheral events (the same as that found
in 7 TeV proton-proton operation) and 70% in the most
central events, due to the approximately 10% occupancy
reached in the silicon strips. A similar asymmetry effect is
also observed with track jets. The jet energy scale and
underlying event subtraction were also validated by corre-
lating calorimeter and track-based jet measurements.
The missing ET distribution was measured for minimum

bias heavy ion events as a function of the total ET deposited
in the calorimeters up to about "ET ¼ 10 TeV. The reso-
lution as a function of total ET shows the same behavior as
in proton-proton collisions. None of the events in the jet-
selected sample was found to have an anomalously large
missing ET .
The events containing high-pT jets were studied for the

presence of high-pT muons that could carry a large fraction
of the recoil energy. Fewer than 2% of the events have a
muon with pT > 10 GeV, potentially recoiling against the
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G. Ingelman: QCD 44 

Jet reconstruction 
Cluster ‘particles’ to jets ⇔ hard partons  
 

       test perturbative QCD 
 

‘particles’=calorimeter cells or tracks 
  
• Cone algorithm:  
  combine particles in a cone around jet axis,   
 
   
• kT algorithm:  
   combine particles according to their  
   relative transverse momentum (kT) 
   Advantages: 
   Infrared/collinear safe at all orders in pQCD  
   ⇒ good for precision NLO QCD analysis 
   No bias from seed towers. 
   Every particle assigned to a jet.  

( ) ( ) 7.022 <∆+∆=∆ φηR

asymmetry between reconstructed jet energies

AJ =
ET1 − ET2

ET1 + ET2
, ∆φ > π/2

partons/jets loose energy to the quark gluon plasma

jet structure investigated in details

more possible: b-jets, t-jets

interplay of microscopic partons / jets and macroscopic QCD fluid
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Light-by-light scattering

[ATLAS, Nature Phys. 13, 852 (2017)]

6 Contributions to other sectors of high-energy physics 9

6.1 Photon–photon collisions
In Section 5.2 we have discussed how the large electromagnetic fields produced by accelerated protons or
ions can be considered as quasireal � beams of very low virtuality. Photon–photon collisions in UPCs of
proton [182] and lead (Pb) beams [183] have been experimentally observed at the LHC [195, 207–209].
Although the � spectrum is harder for smaller charges –which favours proton over nuclear beams in the
production of heavy diphoton systems– each photon flux scales with the squared charge of the hadron,
Z2, and thus � � luminosities are extremely enhanced for ion beams (Z4 = 5 · 107 in the case of Pb–Pb).
Figure 27 (left) shows a typical � � process in UPCs (light-by-light scattering, in this particular case),
and Table 5 summarises the relevant parameters for ultraperipheral pp, p–Pb, and Pb–Pb collisions at
FCC energies.
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Fig. 27: Left: Diagram of elastic � � ! � � scattering in an UPC where the initial-state photons are
emitted coherently by the protons and/or nuclei which survive the electromagnetic interaction. Right:
Effective photon–photon luminosities as a function of � � c.m. energy (W� �) for five colliding sys-
tems at FCC and LHC energies: Pb–Pb at

p
s = 39, 5.5 TeV (at their corresponding nominal beam

luminosities); pp at
p

s = 100, 14 TeV (corresponding to 1 fb�1 integrated luminosities); and e+e�

at
p

s = 240 GeV (FCC-ee nominal luminosity per IP). The vertical dashed lines indicate the energy
thresholds for Higgs, W+W�, Z Z, and tt̄ production.

The figure of merit for UPC � � processes is the effective � � luminosity, dLe↵/dW� � ⌘
LAB dL� �/dW� � , where LAB is the collider luminosity for the A B system and dL� �/dW� �

is the photon–photon luminosity as a function of the � � centre-of-mass energy W� � , ob-
tained integrating the two photon fluxes over all rapidities y, i.e., d2L� �/dW� �dy =
(2/W� �)f�/A(W� �/2ey)f�/B(W� �/2e�y). Figure 27 (right) shows a comparison of the dLe↵/dW� �

reachable as a function of W� � for five different colliding systems at LHC and FCC energies. Two-
photon centre-of-mass energies at the FCC will reach for the first time the range beyond 1 TeV. Clearly,
Pb–Pb at

p
sNN = 39 TeV provides the largest two-photon luminosities of all colliding systems. The ef-

fective luminosities are very high up to large diphoton masses (in the next section we present a case study
for the measurement of light-by-light scattering above m�� = 5 GeV that profits from the large photon
fluxes available at FCC). The vertical lines in Fig. 27 show the thresholds for photon-fusion production
of Higgs, W+W�, Z Z, and tt̄. All such processes, sensitive to different tests of the electroweak sector
of the Standard Model (SM) [210], such as anomalous quartic-gauge couplings and top-electroweak mo-

9Editors: D. d’Enterria, J.-P. Lansberg
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Figure 3 | Kinematic distributions for � � !� � event candidates. a, Diphoton acoplanarity before applying the Aco < 0.01 requirement. b, Diphoton
invariant mass after applying the Aco < 0.01 requirement. Data (points) are compared to MC predictions (histograms). The statistical uncertainties on the
data are shown as vertical bars.

of the track that is unmatched with the electron (trk2) is required
to be below 2 GeV. The additional hard-bremsstrahlung photon is
expected to have E�

T ⇡ (Ee
T � ptrk2T ). The ptrk2T < 2GeV requirement

ensures a su�cient 1R separation between the expected photon
and the second electron, extrapolated to the first layer of the EM
calorimeter. The data sample contains 247 � � ! e+e� events that
are used to extract the photon reconstruction e�ciency, which is
presented in Fig. 2b. Good agreement between data and � � !e+e�

MC simulation is observed and the photon reconstruction
e�ciency is measured with a 5–10% relative uncertainty at low
ET (3–6GeV).

In addition, a cross-check is performed on Z !µ+µ�� events
identified in pp collision data from 2015 corresponding to an inte-
grated luminosity of 1.6 fb�1. The results support (in a similar way
to ref. 42) the choice to use the three shower-shape variables in this
photon PID selection in an independent sample of low-ET photons.

The photon cluster energy resolution is extracted from data
using � � ! e+e� events. The electrons from the � � ! e+e�

reaction (see Supplementary Information) are well balanced in their
transverse momenta, with very small standard deviation, �pe+T �pe�T

<
30MeV, much smaller than the expected EM calorimeter energy
resolution. Therefore, by measuring (Ecl1

T � Ecl2
T ) distributions in

� � ! e+e� events, one can extract the cluster energy resolution,
�EclT

. For electrons with ET < 10GeV, the �EclT
/Ecl

T is observed to
be approximately 8% both in data and simulation. An uncertainty
of ��E�

T
/�E�

T
= 15% is assigned to the simulated photon energy

resolution and takes into account di�erences between �EclT
in data

and �E�
T
in simulation.

Similarly, the EM cluster energy scale can be studied using the
(Ecl1

T +Ecl2
T ) distribution. It is observed that the simulation provides a

good description of this distribution, within the relative uncertainty
of 5% that is assigned to the EM cluster energy-scale modelling.

Background estimation
Due to its relatively high rate, the exclusive production of electron
pairs (� � ! e+e�) can be a source of fake diphoton events. The
contribution from the dielectron background is estimated using
� � ! e+e� MC simulation (which gives 1.3 events) and is verified
using the following data-driven technique. Two control regions
are defined that are expected to be dominated by � � ! e+e�

backgrounds. The first control region is defined by requiring events
with exactly one reconstructed charged-particle track and two
identified photons that satisfy the same preselection criteria as for
the signal definition. The second control region is defined similarly

to the first one, except exactly two tracks are required (Ntrk = 2).
Good agreement is observed between data and MC simulation in
both control regions, but the precision is limited by the number
of events in data. A conservative uncertainty of 25% is therefore
assigned to the � � ! e+e� background estimation, which reflects
the statistical uncertainty of data in the Ntrk = 1 control region.
The contribution from a related QED process, � � ! e+e�� � , is
evaluated using the MadGraph5_aMC@NLO MC generator43 and
is found to be negligible.

The Aco < 0.01 requirement significantly reduces the CEP
gg !� � background. However, the MC prediction for this process
has a large theoretical uncertainty; hence, an additional data-driven
normalization is performed in the region Aco>b, where b is a value
greater than 0.01 which can be varied. Three values of b (0.01, 0.02,
0.03) are used, where the central value b=0.02 is chosen to derive
the nominal background prediction and the values b= 0.01 and
b= 0.03 to define the systematic uncertainty. The normalization
is performed using the condition: f norm,b

gg!� � = (Ndata (Aco > b) �Nsig
(Aco>b)�N� �!e+e�(Aco>b))/Ngg!� � (Aco>b), for each value of
b, where Ndata is the number of observed events, Nsig is the expected
number of signal events, N� �!e+e� is the expected background from
� � ! e+e� events and Ngg!� � is the MC estimate of the expected
background from CEP gg ! � � events. The normalization factor
is found to be f normgg!� � = 0.5± 0.3 and the background due to CEP
gg !� � is estimated to be f normgg!� � ⇥Ngg!� � (Aco < 0.01) = 0.9 ±
0.5 events. To verify the CEP gg ! � � background estimation
method, energy deposits in the ZDC are studied for events before
the Aco selection. It is expected that the outgoing ions in CEP
events predominantly dissociate, which results in the emission of
neutrons detectable in the ZDC20. Good agreement between the
normalized CEP gg !� � MC expectation and the observed events
with a ZDC signal corresponding to at least 1 neutron is observed
in the full Aco range (see Supplementary Information for details).

Low-pT dijet events can produce multiple ⇡0 mesons, which
could potentially mimic diphoton events. The event selection
requirements are e�cient in rejecting such events, and based on
studies performed with a supporting trigger, the background from
hadronic processes is estimated to be 0.3 ± 0.3 events. MC studies
show that the background from � � !qq̄ processes is negligible.

Exclusive neutral two-meson production can be a potential
source of background for LbyL events, mainly due to their back-to-
back topology being similar to that of the CEP gg ! � � process.
The cross-section for this process is calculated to be below 10% of
the CEP gg !� � cross-section44,45 and it is therefore considered to
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ultra-peripheral ion collisions produce strong electromagnetic fields

beam of quasi-real photons (equivalent photon approximation)

Halpern scattering γγ → γγ observed

also ultra-peripheral: nuclear PDFs
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Theory development

many interesting experimental results available or in reach

precise studies need interplay of theory and experiment

more dedicated theory development needed

we need to develop and maintain a standard model

heavy ion collisions and QCD dynamics can be understood much better !
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Higher energies

[Dainese, Wiedemann (ed.) et al. (2017)]

0 2 4 6 8 10 12 14
r [fm]0

5

10

15

τ [fm/c]

Table 2: Global properties measured in central Pb–Pb collisions (0–5% centrality class) at
p
sNN =

2.76 TeV and extrapolated to 5.5 and 39 TeV. The measurements at 2.76 TeV [9–14] are reported for
comparison only and without experimental uncertainties.

Quantity Pb–Pb 2.76 TeV Pb–Pb 5.5 TeV Pb–Pb 39 TeV
dNch/d⌘ at ⌘ = 0 1600 2000 3600
Total Nch 17000 23000 50000
dET/d⌘ at ⌘ = 0 1.8–2.0 TeV 2.3–2.6 TeV 5.2–5.8 TeV
Homogeneity volume 5000 fm3 6200 fm3 11000 fm3

Decoupling time 10 fm/c 11 fm/c 13 fm/c
" at ⌧ = 1 fm/c 12–13 GeV/fm3 16–17 GeV/fm3 35–40 GeV/fm3

Fig. 2: Left: space-time profile at freeze-out from hydrodynamical calculations for central Pb–Pb colli-
sions at

p
sNN = 5.5 TeV and 39 TeV. Right: time evolution of the QGP temperature as estimated on the

basis of the Bjorken relation and the Stefan-Boltzmann equation (see text for details).

multiplicity at FCC energy is of prime importance for the fluid dynamic expansion, since it constrains a
central characteristic of the initial conditions, namely the entropy density at initial time. More precisely,
for a general viscous dynamics, the second law of thermodynamics implies that the final multiplicity puts
an upper bound on the initial entropy. However, the QCD matter produced in heavy-ion collisions shows
very small dissipative properties at TeV energies and is thus expected to follow a close to isentropic
expansion: the initial entropy density is then fixed by the final event multiplicity. The

p
s-dependence

of fluid dynamic simulations of heavy-ion collisions thus results mainly from the increase in event mul-
tiplicity with

p
s. To illustrate the impact of the expected multiplicity increase from LHC to FCC, we

have run a simplified fluid dynamic simulation for a central Pb–Pb collision. The radial dependence of
the energy density in the initial conditions was chosen to be determined as the smooth nuclear transverse
overlap function of two Wood-Saxon profiles, neglecting any possible energy dependence and fluctu-
ations. Using a standard parametrisation of a realistic QCD equation of state and minimal dissipative
properties (shear viscosity to entropy density ratio ⌘/s = 1/4⇡), we show in Fig. 2 (left) results for the
freeze-out hypersurfaces of central Pb–Pb collisions at different collision energies. This figure quantifies
the naive expectation that the denser system created at higher collision energy has to expand to a larger
volume and for a longer time before reaching the freeze-out temperature at which decoupling to hadrons
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CHAPTER 4: HEAVY IONS AT THE FUTURE CIRCULAR COLLIDER

643

Larger collision energy

higher initial energy density and temperature

higher multiplicity Nch

larger lifetime and volume of fireball

better probes of collective physics

thermal charm quarks

more hard probes
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A dedicated detector for low pT ?

advances in detector technology might allow to construct dedicated
detector for low pT spectrum

down to pT ≈ 10 MeV ≈ 1
20 fm

?

low momentum di-leptons
→ excellent understanding of charmonia and bottomonia (P-wave)
→ soft photon theorems

probe macroscopic properties of QCD fluid: very soft pions, kaons,
protons, di-leptons
→ dynamics of chiral symmetry restoration
→ pion condensates / disoriented chiral condensates ?

understand thermalization and dissipation in detail
→ spectrum also at pT � Tkinetic freeze-out ≈ 120 MeV
→ spectral distortions ? (cf. current discussion in cosmology)
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The high energy nuclear collision experiments landscape

present

LHC (ALICE / ATLAS / CMS / LHCb)

RHIC (Star / Phenix)

SPS (NA61/SHINE)

SIS (HADES)

future (approved)

GSI/FAIR (CBM)

JINR/NICA (MPD, BM@N)

future (proposed)

sPhenix (RHIC)

Electron-Ion collider in the USA (eRHIC / JLEIC)
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CERN schedule
[J. M. Jowett, 10/2017]

LHC heavy-ion runs, past & approved future 
+ species choices according to ALICE 2012 LoI (some variations possible) 

(adapted without permission)

p-p & 
Pb-Pb Pb-Pb Pb-Pbp-pp-Pb Pb-Pb ?

Pb-Pb Pb-Pbp-Pb

201320122011

LS1

2010

Pb-Pb Pb-Pb
p-Pb!

p-Pb

Run 1

J.M. Jowett, Workshop on the physics of HL-LHC, and perspectives at HE-LHC, CERN, 30/10/2017 21

LHC will have done 12 ~one month 
heavy ion runs between 2010 and 
2030 (LS4).   5/12 done already.

Xe-XeXe-Xe
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Conclusions

high energy nuclear collisions produce a relativistic QCD fluid!

interesting parallels between cosmology and heavy ion collisions

chance to understand a relativistic fluid from first principles

experimental hints for collective flow also in pPb and pp collisions

interesting to study also smaller energy / higher baryon density regime

QCD fluid can be understood in much more detail with combined effort of
theory and experiment!
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Backup slides



High-Luminosity LHC schedule

LHC Schedule

5

ALICE physics programme approved until Run 4 (~2030)



High-Energy LHC and FCC

[M. Benedikt, FCC Week, 04/2018]

HE-LHC & FCC
• Workshop in Amsterdam this week 

https://indico.cern.ch/event/656491/overview

• Yellow Report: “Physics at the FCC-hh, a 100 TeV pp collider” 

(http://dx.doi.org/10.23731/CYRM-2017-003)


• Schedule:

‣ First physics: ~2040


732
FCC Status
Michael Benedikt
4th FCC Week, Amsterdam, 9 April 2018

Technical Schedule for each of the 3 options
20 22 24 26 28 30 32 34 38 40

Civil Engineering FCC-hh ring

Dipole short models

16 T dipole indust. prototypes
16 T dipoles preseries

16 T series productionSC
 M

ag
ne

ts

CE FCC-ee ring + injector

FC
C-

hh
FC

C-
ee

HE
-L

HC

Strategy Update 2026 – assumed project decision

Installation HE-LHC

LHC Modification

42

Technical Design Phase

36

Installation + test FCC-ee

Installation + test FCC-hh

CE TL to LHC        

LHC Removal

Dipole long models

Injector

schedule constrained by 16 T magnets & CE
→ earliest possible physics starting dates
• FCC-hh: 2043
• FCC-ee: 2039
• HE-LHC: 2040 (with HL-LHC stop LS5 / 2034)

16 T magnets

FCC-hh

FCC-ee

HE-LHC

M. Benedikt, Study status and further 
plans, 9 April 2018, FCC Week 2018


