Direct Detection of WIMP Dark Matter Status and Future Directions

XENON1T

Uwe Oberlack

Institute of Physics & PRISMA Cluster of Excellence Johannes Gutenberg University Mainz http://xenon.physik.uni-mainz.de Strategy Workshop Particle Physics Universitätsclub Bonn May 03, 2018 with input by M. Lindner M. Schumann E. Aprile F. Petricca – thank you!

Bundesministerium für Bildung und Forschung

緣

IGU

The Case for WIMP Dark Matter

- WIMP DM as thermal relic at the "right" density via freeze-out
- Appears as natural candidate in well motivated, UV-complete theories (geared towards solving other particle physics puzzles)
- Traditional example: SUSY, but also UED, little Higgs, ...

→Expect new physics at the TeV scale

8 Problem: nothing found so far

- ► at the LHC
- with direct searches
- with indirect searches

 \rightarrow It's more complicated!

Evolution of Dark Matter Models

Classic WIMP

Mies van der Rohe, German Pavillion in Barcelona

Strategy Workshop PP Bonn 03-05-18

WIMP Dark Matter Direct Detection

- Elastic scattering of WIMPs χ off nuclei A.
 - → nuclear recoil
 - ▶ spin-independent (~A²) or spin-dependent? ... EFT op's
- Mass range
 - $m_x \sim 10 \text{few } 10^3 \text{ GeV/c}^2 \text{ ("traditional")}$
 - GeV/c² to 10⁴ GeV/c² (extended)
- Energy spectrum:
 - "Standard" spherical halo
 - DM relative velocity: $v_v \sim 230$ km/s
 - \rightarrow exponential recoil spectrum <E> ~ O(10 keV)
 - ► large nuclei: coherence ~A² for small q
 - nuclear form factor reduction at higher q
 - Local number density of WIMPs: ρ_{χ}/m_{χ} $\rho_{\chi} \sim 0.3 \text{ GeV/c}^2/\text{cm}^3$
 - $\rho_{\chi}/m_{\chi} \sim 100 / L^* (30 \text{ GeV/c}^2/m_{\chi})$

Backgrounds in Direct DM Search

Cross-sections are *very* small: $<10^{-46}$ cm² (spin-independent). Without background, sensitivity \propto (mass × exposure time)⁻¹ With background subtraction \propto (M t)^{-1/2} until limited by systematics.

Backgrounds by origin:

- external
 - ► cosmic \rightarrow depth, veto
 - ► radiogenic
 - \rightarrow shielding, self-shielding, veto, material selection
- surface \rightarrow localization, veto
- internal → minimize!
 - distillation
 - depletion
 - purification, surface treatment
 - store materials underground to reduce cosmogenic activation
 - discrimination

Backgrounds by radiation type:

- gamma rays: long range
- beta decays
- α decays from natural decay chains
 + nuclear recoils
- neutrons from (α, n) reactions and spontaneous fission (up to ~10 MeV)
- neutrons from cosmic ray muons
 >~ 100 MeV
- neutrinos!

Dark Matter Searches: Status

JGU

PRISMA

Neutrino Floor: Nuclear Recoils from Solar, Supernova, and Atmospheric v's

spin-independent WIMP-nucleon interactions

some results are missing...

Neutrino Floor: Nuclear Recoils from Solar, Supernova, and Atmospheric v's

DM Detector Overview Detection Principles Tracking **Bubble Formation** Drift, DM-TPC, PICO, ... MIMAC, NIT Ionization +other (ER) ... CoGeNT Super-CDMS, LAr: DarkSide **Edelweiss-III** LXe: XENON, LUX/LZ, Panda-X DARWIN **Scintillation** Phonons **CRESST-III** DAMA/LIBRA KIMS, Sabre, COSINE-100 XMASS, DEAP

Cryogenic Detectors – CRESST-III

- Scintillating cryogenic (15 mK) CaWO₄ crystals as target
- Separate cryogenic light detector
- Detectors optimized for low mass dark matter
- Absorber volume reduced by a factor $\sim 10 (\approx 24g)$
- 100 eV threshold goal
- Veto surface-related background
- particle discrimination

Cryogenic Detectors – CRESST-III

Leading contribution by German groups in **CRESST**:

- MPP Munich
- TU Munich
- University of Tübingen

- Scintillating cryogenic (15 mK) CaWO₄ crystals as target
- Separate cryogenic light detector
- Detectors optimized for low mass dark matter
- Absorber volume reduced by a factor $\sim 10 (\approx 24g)$
- 100 eV threshold goal
- Veto surface related background

Particle discrimination

Future: Upgrade to CRESST-III Phase 2

Goals:

- 100 × background reduction. material screening and purification of raw material for crystal production \widehat{a}
- Exposure 1000 kg days in 2 years. facility upgrade to operate 100 detectors

- Planning, prototyping and testing ongoing
- Start data taking after a major upgrade of the setup in 2020
- Leading sensitivity in the low mass region
- SFB1258, BMBF, Großgeräteantrag @ MPG

The Dual Phase Noble Liquid TPC (Ar, Xe)

- WIMP recoil on nucleus in dense liquid
 - \rightarrow Ionization + UV Scintillation
- Detection of primary scintillation signal (S1) with PMTs.
 Ar: wavelength shifting necessary
- Charge drift towards liquid/gas interface at low field: ~0.1- < 1 kV/cm.
- Charge extraction liquid/gas at high field between ground mesh (liquid) and anode (gas)
- Proportional scintillation signal (S2) in the gas phase high field: ~10 kV/cm
- 3D position measurement
 - ► X/Y from S2 signal. Resolution few mm.
 - ► Z from electron drift time (~ 1 mm).

Background Discrimination in Dual Phase Liquid Xenon TPCs

Ionization/Scintillation Ratio S2/S1

3D Position Resolution: fiducial cut, singles/multiples

PRISMA JGU

Liquid Xenon Dual Phase TPCs Present Experiments

LUX 0.5 m x 0.5 m (finished)

PandaX-II 0.6 m x 0.6 m (running) XENON1T 1 m x 1 m (running)

Liquid Xenon Dual Phase TPC XENON1T >2 ton sensitive

- 2016 present
- Mass: >3 ton / 2.2 ton sensitive
- Background in FV: ~0.2 mdru* dominated by ²²²Rn
- exposure: 35 ton-day published, result with ~1 ton-yr upcoming
- predicted sensitivity @2 ton-yr:
 ~2 10⁻⁴⁷ cm²
- min. of limit curve: 7.7×10⁻⁴⁷ cm² at 35 GeV/c²
- → Lowest background, most sensitive DM detector operating.

German XENON groups provide leading contributions MPIK Heidelberg Universities Freiburg, Mainz, Münster

Uwe Oberlack

Liquid Xenon Dual Phase TPCs Near Future

Uwe Oberlack

The next step: XENONnT

8 t LXe @180 K

5.9 t active target

476 PMTs

1.5 meter drift length -1.5 meter diameter

- Most sub-systems, already operative, designed with this upgrade in mind
- Main challenge: reduce Radon by x 10

Sensitivity with XENON and beyond

Strategy Workshop PP Bonn 03-05-18

DARWIN The ultimate WIMP Detector

SUSY Dark Matter

SUSY under pressure because not found at LHC?

plots: Sven Heinemeyer (MasterCode 2015)

→ true for some very constraint models (CMSSM etc.) but looks different when more parameters are left unconstrained

Example: pMSSM10 ~ 10 SUSY parameters, e.g. EPJ C75, 422 (2015)

WIMP out of reach of HL-LHC (best-fit regions not covered), but accessible by DARWIN

Dark Matter Searches to the Neutrino Floor

DAR

٠

 $x y^{-1} x keV^{-1}$

Rate [evts × t⁻¹

 10^{-2}

 10^{-3}

Energy [keV]

Solar pp-Neutrinos with DARWIN

JCAP 11, 017 (2016)

Differential Recoil Spectrum in Xe

- neutrinos interact with Xe electrons
 →electronic recoil signature
- continuous recoil spectrum
 → largest rate at low E

~0.26 v evts/t/d in low-E region (2-30 keV)

0.8⁸B ⁷Be pep pp 0.7 0.6 $_{s}^{\mathrm{P}}$ DARWIN 0.5 0.4 0.3 0.2 10^{3} 2×10^{3} 2×10^{2} 10^{4} Neutrino Energy [keV]

Neutrino interactions

30t target mass, 2-30 keV window

- → 2850 neutrinos per year (89% pp)
- → achieve 1% statistical precision on pp-flux (→Pee) with 100 t x yr

Direct Detection in Germany

Strategy Workshop PP Bonn 03-05-18

Conclusions

- WIMP direct searches are a highly active field with tremendous progress in sensitivities, covering large fractions of relevant parameter space
- Updates since Mainz workshop 2017:
 - first results from XENON1T (world-leading) and Panda-X2
 - first results from CRESST-III (world-leading)
- Low masses: cryogenic detectors (CRESST, Super-CDMS).
- High masses (>5 GeV/c²): liquid xenon TPCs.
 - Completion of search and analysis with XENON1T.
 - Construction of XENONnT
- Key technologies and strong groups in Germany
- Longer term future: DARWIN, ...

Concluding statement from Strategy Workshop Non-Collider Physics 5/'17:

WIMPs wären auf natürliche Weise beim Urknall mit der richtigen Dichte erzeugt worden. Zur Zeit führen die Experimente CRESST-III (niedrige Massen) und XENON1T (mittlere und große Massen) die direkte WIMP-Suche an. Mit dem weiteren Ausbau von CRESST-III auf 100 Detektoren und XENON1T auf XENONnT wird diese Suche deutlich empfindlicher werden. Abhängig von den Ergebnissen sollte der große Flüssig-Xenon-Detektor DARWIN, der auch ein breites Neutrinophysikprogramm hat, realisiert werden.