

Combination of HERA c and b data

Paper draft v2 presentation

Editors: Karin Daum, Oleksandr Zeniaev

Referees: Mandy Cooper-Sarkar, Katja Krüger

Other EB members: I.Abt, A.Geiser, S.Levonian,

S.Schmitt (chair), K.Wichmann, M.Wing

Outline

- Time-line towards publication
- Paper content summary
- Comments summary
- Editorial board summary
- Revised paper structure
- Figure and table changes

Timeline

- Paper draft (v1) presentation on 23.11.2017
- Circulation for two weeks: 23.11.-8.12.2017
- 19 sets of comments received
- Editorial board meeting on 13.12.2017
- Second draft released on 2.2.2018
- This talk: draft v2 presentation

- Next steps
 - Paper reading on 2.3.2018
 - Circulate post-reading draft for another week
 - Submit to journal
- For spring conferences:
 - Additional (extended)
 preliminary with new material
 - → presentation by Sasha

Paper content recap

- Paper consists of three major parts
 - Combination of HERA charm and beauty cross sections (supercedes previous charm combination)
 - Comparison to predictions
 - QCD analysis focussing on the determination of charm and beauty quark masses

- Observation: data and QCD predictions have a 3σ tension in the x-slope
- Dedicated studies are included to shed more light on this
- The quark masses are found to be

```
\begin{split} &m_c(m_c)\!=\!1.290^{+0.046}_{-0.041}(\exp/\mathrm{fit})^{+0.062}_{-0.014}(\mathrm{model})^{+0.003}_{-0.031}(\mathrm{parametrisation})~\mathrm{GeV} \\ &m_b(m_b)\!=\!4.094^{+0.104}_{-0.109}(\exp/\mathrm{fit})^{+0.090}_{-0.032}(\mathrm{model})^{+0.001}_{-0.031}(\mathrm{parametrisation})~\mathrm{GeV} \\ &\mathrm{PDG:}~m_c(m_c)\!=\!1.28\!\pm\!0.03~\mathrm{GeV}~m_b(m_b)\!=\!4.18^{+0.04}_{-0.03}~\mathrm{GeV} \end{split}
```


Summary of comments received

19 sets of comments were received.

- 1 20171124-180604 Mandy Cooper-Sarkar
- 2 20171124-192632 Achim Geiser
- 3 20171127-104013 Iris Abt
- 4 20171127-133650 Sergey Levonian
- 5 20171130-184207 Joerg Gayler
- 6 20171201-133658 Misha Lisovyi (plus attachment)
- 7 20171202-170022 Brian Foster
- 8 20171203-174808 Dietrich Wegener
- 9 20171204-135338 Stefan Schmitt
- 10 20171205-121157 Ewald Paul
- 11 20171207-214529 Boris Levchenko.txt
- 12 20171208-004918 Katja Krueger
- 13 20171208-055147 Dieter Haidt (plus attachment)
- 14 20171208-173515 Jan Olsson and Nelly Gogitidze
- 15 20171208-184645 Achim Geiser: answer to Jan and Nelly
- 16 20171210-115907 Max Klein
- 17 20171211-000318 Boris Kuprash
- 18 20171211–131140 Peter Truoel (plus attachment)
- 19 20171211-141058 Daniel Britzger

- All comments supported publication of the data
 - ... I appreciate very much that this final combinations waas possible leading to improved HERA results...
- Some criticism about arrangement and length of sections
 - ... the introduction is far too long and detailed...
- Various (contradicting) suggestions to include or exclude figures or studies around the ~3σ tension

Editorial board meeting

- All major comments were discussed in the EB
 - Content
 - Text structure
 - Figures, tables

Minutes are available

- The detailed text changes were delegated to Karin, Achim, Sasha
 - An answer file is available where each single comment is addressed
- We also decided on the journal
 - to be submitted to EPJC

Decisions on content change requests

- 3σ as "discrepancy" or "fair description"?
 - → keep the word "tension"
- Remove (parts of) section 6.2? Remove study with x>0.01?
 - → keep it but improve text structure
- Quantify impact on LHC?
 - → beyond the scope of this paper
- Interpret 3σ tension in charm in comparison to the agreement in beauty?
 - → not possible (different x range)

Changes to the paper structure

- Shorter introduction, heavy flavour tagging techniques now in sect. 3
- New table with quark mass uncertainty breakdown
- Section 6.3 (study of the x_{R1} dependence...) split into two parts
- Technicalities are collected in an appendix: systematic uncertainty details (Table 4), PDF fit settings and central results

Draft v1: 22 text pages, 5 tables, 24 figures Draft v2: 23 text pages, 8 tables, 22 figures

Draft V1:

- 1. Introduction
- 2. Open heavy flavour production in DIS
- 2.1 Theory of hea Draft V2:
- 3. Combination of
- 3.1 Data samples
- 3.2 Extrapolation
- 3.3 Combination r
- 4. Combined cros
- 5. Comparison wit
- 5.1 FFNS prediction
- 5.2 VFNS predicti
- 5.3 Summary of th
- 6. QCD analsvis 6.1 Theoretical for
- 6.2 QCD fit and do
- 6.3 Study of the x
- 7. Conclusions

- 1. Introduction
- 2. Heavy flavour production in DIS
- 2.1 Theory of heavy flavour production
- 3. Combination of H1 and ZEUS measurements
- 3.1 Data samples
- 3.2 Extrapolation of visible cross sections to σ_{rod}
- 3.3 Combination method
- 4. Combined cross sections
- 5. Comparison with theory predictions
- 5.1 FFNS predictions
- 5.2 VFNS predictions
- 5.3 Summary of theory comparisons
- 6. OCD analsvis
- 6.1 Theoretical formalism and settings
- 6.2 QCD fit and determination of the running heavy quark masses
- 6.3 $\sigma_{rd}(c)$ and $\sigma_{rd}(b)$ as a function of the partonic x
- 6.4 increasing the impact of charm data on the gluon density
- 7. Summary Appendix

Changes to figures and tables

- Figure 2,3 removed
- PDF figures 15, 22 color code unified with other figures
- PDF fits have names (figures 15-19 and 22-24)
- Figure 20 was improved in many aspects
- Figure 24 now has a reduced number of Q² bins

- Table 4 moved to appendix
- New table with quark mass error breakdown
- New tables with fit settings and PDF parameters

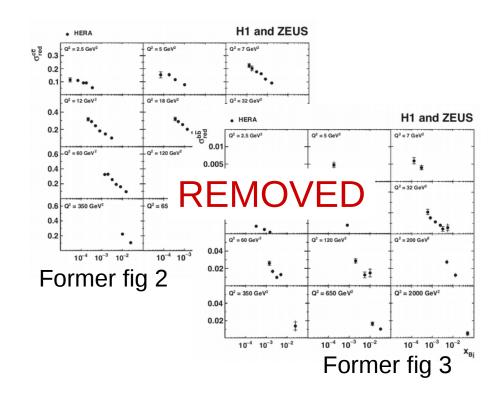

Full table of correlations and cross sections will be published as extra material (online)

Figure changes: 2 and 3

- Figure 2,3 removed
 - These showed only the combined cross sections
 - The same cross sections are visible on many other figures, either in comparisons with the data before combination or with various predictions

Figure changes: 15

 Color code now matches other figures. Hatch style improved

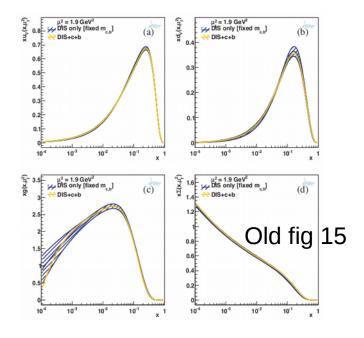
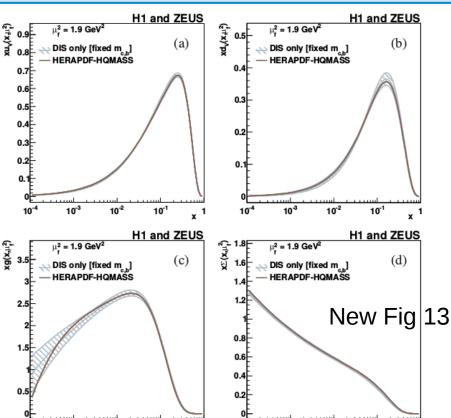



Figure showing the PDFs corresponding to the quark mass extraction

10⁻³

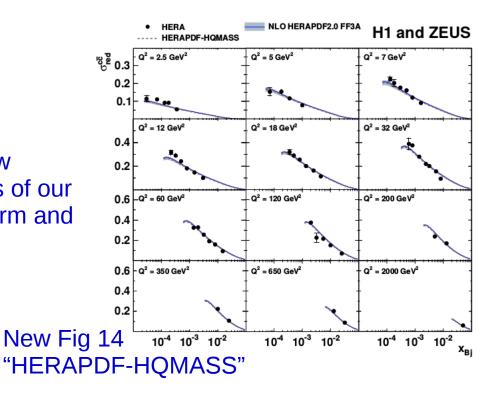
10-2

10⁻¹

H1/ZEUS meeting, Feb 15, 2018

S.Schmitt, c+b draft v2 presentation

Figure changes: 16-19



All fits have a name tag

Old fig 16 "NLO fit"

Figures show comparisons of our fit to the charm and beauty data

Figure changes: 20

Several improvements

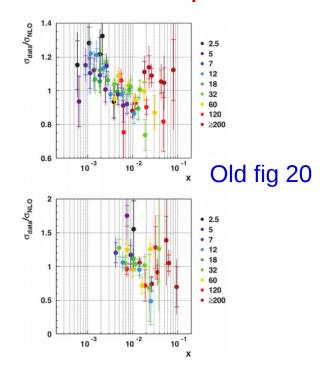


Figure shows the integration variable <x> probed in the PDF fit by the charm and beauty data

H1/ZEUS meeting, Feb 15, 2018

S.Schmitt, c+b draft v2 presentation

Figure change: 22

Updated color coding, add H1 and ZEUS on top

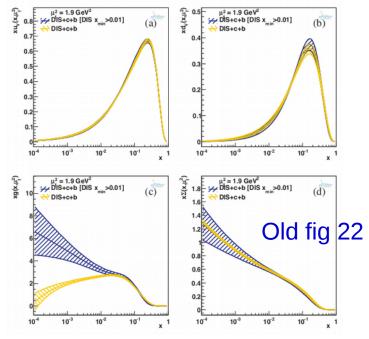
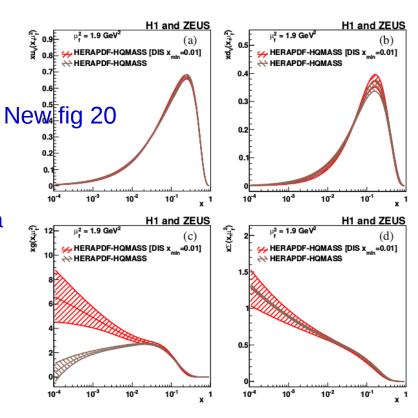



Figure shows comparisons of default PDFs and those from a fit with a cut $x_{\rm BJ}$ >0.01 for inclusive data

H1/ZEUS meeting, Feb 15, 2018

S.Schmitt, c+b draft v2 presentation

Figure change: 24

Show only selected Q² bins

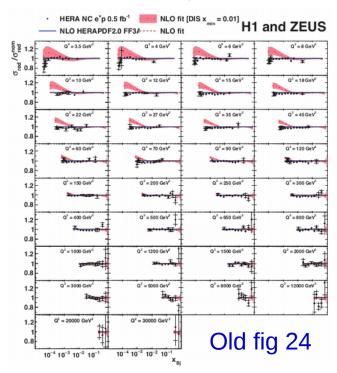
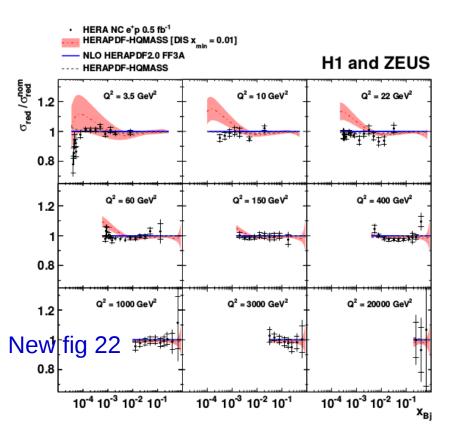



Figure shows comparisons of our fits to inclusive HERA data

H1/ZEUS meeting, Feb 15, 2018

New tables: 5

 New table 5 shows a detailed breakdown of the quark mass uncertainties

Parameter	Variation	$m_c(m_c)$ uncertainty	$m_b(m_b)$ uncertainty						
		(GeV)	(GeV)						
Experimental / Fit uncertainty									
Total	$\Delta \chi^2 = 1$	+0.046 -0.041	+0.104 -0.109						
Model uncertainty									
f_s	$0.4^{+0.1}_{-0.1}$	-0.003 +0.004	-0.001 +0.001						
Q_{\min}^2	3.5 ^{+1.5} _{-1.0} GeV ²	-0.001 +0.007	-0.005 +0.007						
$\mu_{r,f}$	$\mu_{r,f}^{\times 2.0}_{\times 0.5}$	+0.030 +0.060	-0.032 +0.090						
$\alpha_s^{n_f=3}(M_Z)$	$0.106^{+0.0015}_{-0.0015}$	-0.014 +0.011	+0.002 -0.005						
Total		+0.062 -0.014	+0.090 -0.032						
PDF parameterisation uncertainty									
$\mu_{\mathrm{f},0}^2$	$1.9\pm0.3~\text{GeV}^2$	+0.003 -0.001	-0.001 +0.001						
$E_{u_{v}}$	set to 0	-0.031	-0.031						
Total		+0.003 -0.031	+0.001 -0.031						

Table 5: List of uncertainties for the charm and beauty quark mass determination. The rest of PDF parameterisation uncertainties have no effect on $m_c(m_c)$ and $m_b(m_b)$.

New tables: A2 and A3

New tables in the appendix give fit settings and PDF parameters

Variation	Standard Value	Lower Limit	Upper Limit		
Q_{\min}^2 [GeV ²]	3.5	2.5	5.0		
f_s	0.4	0.3	0.5		
$\alpha_s^{n_f=3}(M_Z)$	0.106	0.1045	0.1075		
$\mu_{r,f}^2$	$Q^2 + 4m_Q^2$	$0.25 \cdot (Q^2 + 4m_Q^2)$	$4\cdot(Q^2+4m_{\rm Q}^2)$		
$\mu_{\mathrm{f},0}^2~\mathrm{[GeV^2]}$	1.9	1.6	2.2		

	A	В	С	D	Ε	A'	B'
xg	2.81	-0.198	8.14			1.39	-0.273
xu_{ν}	3.66	0.678	4.87		14.7		
xd_v	3.38	0.820	4.27				
$x\overline{U}$	0.102	-0.172	8.27	13.9			
$x\overline{D}$	0.170	-0.172	5.83				
$m_c(m_c)$ [GeV]				1.29			
$m_b(m_b)$ [GeV]				4.05			

Table A.3: Central values of the fitted parameters of HERAPDF-HQMASS.

Table A.2: Input parameters for the HERAPDF-HQMASS fit and the variations considered to evaluate model and parametrisation ($\mu_{f,0}^2$) uncertainties.

Summary

- Many comments were received to the paper on H1/ZEUS charm and beauty data and lead to significant improvement to draft v1
- The draft v2 is available since February 2nd, 2018
- The reading (based on draft v2) is scheduled for: March 2nd, 2018
- Comments should be shared with the EB: h1zeus-eb17bc@desy.de
 (Comments to v2 are expected to address mainly the differences between v1 and v2)