KOs reconstruction with VO finder

Particle Gun Study

Generated sample:

- 100K K0s
 - •P [100 MeV, 3 GeV]
 - •Θ [17°, 150°] → Full acceptance
 - •Ф [0°, 360°]

Work flow


```
from modularAnalysis import *
    from stdCharged import *
    from stdV0s import *
    inputMdst('default', sys.argv[1])
    fillParticleList('pi+:all', '', True)
11
    # KShort from VO
12
    fillParticleList('K S0:V0', '', True)
13
15
    reconstructDecay('K S0:RD -> pi-:all pi+:all', cut='', dmID=1)
17
    # Merge both KShort lists (check if this is done intelligent)
    copyList('K S0:all', 'K S0:V0')
19
    copyList('K S0:all', 'K S0:RD')
    matchMCTruth('K S0:all')
    #main path.add module('TagUniqueSignal', particleList='K S0:all')
21
22
23
    # Perform vertex fit
    vertexKFit('K S0:V0', 0.0, '', '')
    vertexKFit('K S0:RD', 0.0, '', '')
25
    # applyCuts('K S0:V0', '0.450 < M < 0.550')
27
    fillParticleListFromMC('K S0:gen','',True,True)
    matchMCTruth('K S0:gen')
29
    matchMCTruth('pi+:all')
31
    matchMCTruth('K S0:V0')
    matchMCTruth('K S0:RD')
```

Some Numbers

Generated K0s: 68662

V0 finder reconstructed K0s: 50727

Global efficiency (Acceptance*Tracking*V0): 74 %

Global effiiciemcy (Signal): 64 %

Tracking efficiency for Pions

Nb Events with at least 2 TM pions('Good Events')

= 54887

54887/68662 = **80 % of generated K0s can be reconstruct(Acceptance*Tracking)**

V0 finder

V0 Finder reconstructed K0s/Nb Events with at least 2 TM pions

= 50727/54887 = **92 % : V0 efficiency**

Nb Pions in 'good events' > 2 * Nb 'good events' \rightarrow 1 pions generated = 2 pions reco (TM)

It represent 6 % of the 'good events'

→ Thanks to Nils now we know why !!

Some Numbers updated

All the events where 1 generated pion gives 2 TM pions have been skimmed in order to avoid a bias comming from the extra pion

An other generated sample has been produced in order to avoid acceptance effects and have a better picture of the tracking efficiency

Generated K0s (raw): 68618

Generated K0s (W\o 'Extra pions' event)= 65272 (95 %'raw')

V0 finder reconstructed K0s: 51785

Global efficiency (Tracking*V0): 80%

Tracking efficiency for Pions

Nb Events with only 2 TM pions

= 56425

56425/65272 = **86 % of generated K0s can be**

Tracking efficiency = 93 %

V0 finder

V0 Finder reconstructed K0s/Nb Events with only 2 TM pions

= 51785/56425 = **92 % : V0 efficiency**

Extra pions seems to not affect the efficiency of the V0 finder

But they can induces a bias in a Pions distribution study

V0 efficiency study: K0s variables

V0 Finder works properly even if there is a small dip for K0s with less than 1 GeV

V0 efficiency study : Pions variables

V0 efficiency study: K0s

If one of the Pions is a low momentum one then the efficiency drops

Signal Study

Sample generated:

Upsilon(4s)→ B0 B0 → K1 gamma

 $K1 \rightarrow K0s rho$

 $K0s \rightarrow pi + pi$

For my study I will also take into account the Kshorts comming from the other B.

Very preliminary numbers on signal

Generated K0s = 73411

V0 finder reconstructed K0s(TM) = 20764

Global efficiency= 28%

V0 finder efficiency

Nb of K0s reconstructible = Sum(int(NbOfPionTM/2) by event)

= 25237

Nb of K0s TM = 20764

V0 Efficiency = 82 %

Extra Pions Study

« Clone Pions »

Extra pion issue: Generated K0s

Nb Generated K0s: 68662

Nb Generated K0s giving an extra pions: 3330 → 3330/68662 ~ 5 %

Those K0s are mostly 'low momentum'

→ Skimming those events may induced a small bias on momentum efficiency

Extra pion issue: Generated Pions Vs Reco Pions

Nb Generated Pions in those events: 2*3330 = 6660

Nb Reco Pions in those events: $12291 \rightarrow 12291-6660 = 5631$ extra pions if all generated pions get

reconstructed

Real nb Extra pions : 5602

Black: Generated Pions

Red: Reco pions

Generated pions are mostly 'low momentum' and produce in the longitudinal plane

Extra pion issue: Extra Pions

Nb Generated Pions in those events: 2*3330 = 6660

Nb Reco Pions in those events : $12291 \rightarrow 12291-6660 = 5631$ extra pions if all generated pions get

reconstructed

Real nb Extra pions : 5602

Black: Extra Pions

Red: Extra pions

Black: Generated Pions

Extra pions have mostly the same proprieties as the generated ones

Conclusion and Outlooks

Conclusion:

- V0 finder works properly :
 - \rightarrow Some uneficiencies when one of the pions get below 500 MeV but is not clear that we can improve a lot

Outlooks:

- Play with Chi² cuts inside V0 finder
- Add Beam Background