Micro Calorimeters -Production Technologies and Technological Challenges

Sebastian Kempf

Y2

*L*_{β1}

Υı

 $L_{\alpha 1}$

0

Kirchhoff-Institute for Physics, Heidelberg University

50 keV

 γ_3

4. Annual MT Meeting, Berlin, 2018-06-13

Micro Calorimeters -Production Technologies and Technological Challenges

- reminder: metallic magnetic calorimeters
- fab technologies and fab challenges

Y2

 $L_{\beta 1}$

 $L_{\alpha 1}$

0

examples: absorber fab, through-silicon vias, ³⁵
Josephson junctions, ...

50 keV

metallic magnetic calorimeter (MMC)

fundamental limit on energy resolution: $\Delta E_{\rm FWHM} \simeq 2.36 \sqrt{4k_{\rm B}C_{\rm Abs}T^2} \sqrt{2} \left(\frac{\tau_0}{\tau_1}\right)^{1/4}$

key features of metallic magnetic calorimeters

outstanding interplay between highly sensitive magnetic thermometer and near quantum-limited amplifier γ -spectroscopy of a mixed Pu sample using MMCs

Pu isotope ratios same as determined with mass spectrometry

C. Bates et al., J. Low Temp. Phys. 184 (2016) 351

MMC all around the world

state-of-the-art detector geometries

fabrication of metallic magnetic calorimeters

mask writer

mask aligner

UHV sputtering

wet bench chemistry d

dry etching maskless aligner

- standard UV photolithography
- process with 10 (18) layers

why dealing with microfabrication?

semiconductor industries operate well-established fabrication facilities (foundries)

www.intel.com

but: MMC + SQUID fabrication requires special fabrication capabilities

fabrication of metallic magnetic calorimeters

mask writer

mask aligner

UHV sputtering

wet bench chemistry

dry etching maskless aligner

- standard UV photolithography
- Nb based process with 10 (18) layers
- structure sizes: $2 \mu m 5 cm$
- layer thicknesses: 2 nm 200 μm
- non-conventional processes, materials

,non-standard' microfabrication portfolio for fabricating MMCs

,non-standard' microfabrication portfolio for fabricating MMCs

example: process description for 'standard' soft X-ray detectors

detectors with meander-shaped pickup coils and not including thru-substrate vias

layer no.	layer name	material	thickness (nm)	process	purpose
1	Nb1	Nb	250	sputtering + RIE	pickup coil, wiring
2	lso1a	Nb ₂ O ₅ SiO ₂	50 175	anodization lift-off + sputtering	insulation
3	lso1b	SiO ₂	175	lift-off + sputtering	insulation
4	AuPd	Nb / AuPd / Nb	2 / 160 / 2	lift-off + sputtering	resistors
5	Nb2	Nb	500	lift-off + sputtering	wiring
6	Therm	Nb / Au	2 / 200	lift-off + sputtering	detector thermalization
7	Sens	Nb / Au:Er / Au	2 / 1300 / 200	lift-off + sputtering	temperature sensor
8	Seed	Nb / Au / Nb	2 / 200 / 50	sputtering + ion milling + RIE	seed layer for electroplating
9	Abs	Au	5000	electroplating	particle absorber

overhanging (free-standing) absorbers

reduction of athermal phonon loss

more efficient use of space on chip

fabrication of overhanging (free-standing) absorbers

process based on two subsequent resist layers (positive/negative) that are stacked onto each other

challenges (selection):

- resist aspect ratio: 1:100
- structured resist immersed into chemicals
- resist intercompatibility
- absorber area / support structure area

AZ nLOF2070): <i>h</i> < 7 μm
AZ 15nXT:	<i>h</i> < 15 μm
AZ 125nXT:	<i>h</i> > 15 μm
AZ 6632:	<i>h</i> < 5 μm

vertical interconnect accesses (vias) through the substrate

deep reactive ion etching (DRIE) to make holes through the substrate

allow particles to fly through the substrate

thermal isolation of sensitive detector parts

creation of metallic vias through the substrate

wafer backside processing with AI hard mask technique and DRIE

big challenge: wafer frontside contains almost finished detector

in-situ deposited Nb/Al-AlOx/Nb trilayer with selective niobium etching (SNEP)

challenge: control of an angstrom thick oxide layer

fabrication of Josephson junctions

in-situ deposited Nb/Al-AlOx/Nb trilayer with selective niobium etching (SNEP)

presently: smallest junction size (~3 μm) set by size of insulation window (~2 μm) challenge: reaching sub-μm lateral size

microfabrication challenges: a selection

- large contiguous arrays ($A_{det} > 100 \text{ cm}^2$, $N_{det} > 10^4$)
- no. of detector for large-scale experiments
- detector yield
- operation at mK temperatures
 - intrinsic film stress, thermal contraction
- new sensor / absorber materials
 - → Ag:Er, Au/Bi, ...
- control of surface morphology, film growth
- detector complexity
- no. of wiring layers

planarization (CMP, Nb embedding, ...)

summary

thank you for your attention!

