superconducting cavity R&D @ DESY

towards continuous wave operation of the European XFEL

Lea Steder on behalf of the SRF team at DESY 4th Annual MT Meeting, HZB 12 – 14 June 2018

superconducting radiofrequency technology

European XFEL defining the standard

- superconducting radiofrequency (SRF) cavities are figurehead of DESY's engagement for accelerator science
- other projects like LCLS-II, ESS, new SRF based FELs e.g. @ SINAP are profiting from successful technology transfer to industry
- European XFEL is longest SRF linear accelerator worldwide ~ 800 cavities
 - average accelerating gradient 30 MV/m (design: 23.6 MV/m)
 - average quality factor 1.4 x 10¹⁰

(design 1.0 x 10¹⁰)

[D. Reschke et al., PhysRevAccelBeams.20.042004 (2017)]

superconducting radiofrequency technology

European XFEL defining the standard

- superconducting radiofrequency (SRF) cavities are figurehead of DESY's engagement for accelerator science
- other projects like LCLS-II, ESS, new SRF based FELs e.g. @ SINAP are profiting from successful technology transfer to industry
- European XFEL is longest SRF linear accelerator worldwide ~ 800 cavities
 - average accelerating gradient 30 MV/m (design: 23.6 MV/m)
 - average quality factor 1.4 x 10¹⁰
- (design 1.0 x 10¹⁰)

[D. Reschke et al., PhysRevAccelBeams.20.042004 (2017)]

- future goal for European XFEL: flexible beam patterns for experiments
 - short pulses with high energy of 17.5 GeV
 - long pulses (duty factor 10-50 %) with medium energy of 10 GeV
 - continuous wave (cw) mode at 8 GeV

Page 3

challenges for European XFEL upgrade

high-performance cavities for continuous wave mode operation needed

- second injector for continuous wave operation talk E. Vogel
- first 17 cryo-modules to be exchanged: 136 new cavities
- L3 remains untouched but old modules can lengthen L3
- cw-mode capable RF sources (1 IOT per station, + 4 stations in L3)
- cryo plant needs twice the power: 2.5 → 5 kW

poster A. Bellandi

challenges for European XFEL upgrade

high-performance cavities for continuous wave mode operation needed

- second injector for continuous wave operation talk E. Vogel
- first 17 cryo-modules to be exchanged: 136 new cavities
- L3 remains untouched but old modules can lengthen L3

cryo plant needs twice the power: $2.5 \rightarrow 5 \text{ kW}$

- cw-mode capable RF sources (1 IOT per station, + 4 stations in L3)
 - poster A. Bellandi

٠

- high Q_0 since $1/Q \sim P_{RF,loss} \sim P_{cryo,dyn}$
- high gradient for short pulse operation

cavity R&D topics within ARD ST1

improved niobium material and new surface treatments

- two SRF R&D topics identified
 - large grain niobium

disks for cavity production based on the existing world-leading experience at DESY

nitrogen infusion

a novel surface treatment applying a partial pressure of nitrogen during heat treatment developed at Fermilab

large grain cavity R&D

engineering and surface physics towards high-performance cavities

- fine grain (FG) niobium: typical grain size of ~ 50 μ m
 - well-known mechanical & physical properties, commercially available, used for all recent SRF accelerator projects (XFEL, LCLS-2, ESS, MESA)
- large grain (LG) niobium: typical grain size of ~ cm
 - first R&D during preparation phase for European XFEL

[W. Singer et al., PhysRevSTAB.16.012003 (2013)] [A. Ermakov et al., 2008 J. Phys.: Conf. Ser. **97** 012014]

large grain cavity R&D

engineering and surface physics towards high-performance cavities

- fine grain (FG) niobium: typical grain size of \sim 50 μ m
 - well-known mechanical & physical properties, commercially available, used for all recent SRF accelerator projects (XFEL, LCLS-2, ESS, MESA)
- large grain (LG) niobium: typical grain size of ~ cm
 - first R&D during preparation phase for European XFEL

[W. Singer et al., PhysRevSTAB.16.012003 (2013)] [A. Ermakov et al., 2008 J. Phys.: Conf. Ser. **97** 012014]

- specification for material, mechanical forming and welding process to be defined
 - compatibility with pressure equipment directive (PED)
 → investigation of mechanical properties LG disks from different vendors
- → stable industrial high-performance cavity production

large grain cavity R&D

engineering and surface physics towards high-performance cavities

- fine grain (FG) niobium: typical grain size of ~ 50 μ m
 - well-known mechanical & physical properties, commercially available, used for all recent SRF accelerator projects (XFEL, LCLS-2, ESS, MESA)
- large grain (LG) niobium: typical grain size of ~ cm
 - first R&D during preparation phase for European XFEL

[W. Singer et al., PhysRevSTAB.16.012003 (2013)] [A. Ermakov et al., 2008 J. Phys.: Conf. Ser. **97** 012014]

- specification for material, mechanical forming and welding process to be defined
 - compatibility with pressure equipment directive (PED)
 → investigation of mechanical properties LG disks from different vendors
- → stable industrial high-performance cavity production
- surface-sensitive characterization techniques and analysis of existing cavity test data
 - investigation of grain boundaries (less than in FG) responsible for RF losses?
 - systematic studies of correlations between cavity treatment and performance
- → identification of surface properties correlating with cavity performance

Page 9

performance of large grain niobium cavities

promising **Q**₀ values in vertical and module tests

- 11 nine-cell, several three- and single-cell large grain cavities fabricated
 - ➔ world class performance
- vertical test comparison to fine grain cavities
 - for standard EP surface treatment about 25 % higher Q₀
 - same reach for high accelerating gradients

performance of large grain niobium cavities

promising **Q**₀ values in vertical and module tests

- 11 nine-cell, several three- and single-cell large grain cavities fabricated
 - ➔ world class performance
- vertical test comparison to fine grain cavities
 - for standard EP surface treatment about 25 % higher Q₀
 - same reach for high accelerating gradients
- European XFEL pre-series cryo-module XM-3 with 7 LG + 1 FG cavities
 - \rightarrow cw operation with excellent results and stability
- module test in continuous wave and long pulse mode
 - stable operation at 17 MV/m and Q_0 of 2.3 x 10^{10} at 2K
 - long pulse operation with duty factors (DF) from 22-43 %
- long term (>7y) operation of two further LG cavities in FLASH modules

heat treatments in a partial pressure of nitrogen

nitrogen infusion as promising approach

- nitrogen infusion yields significant development of quality factors
 - baseline recipe: 3 hours heat treatment at 800°C, then 48 hours 120°C in UHV with nitrogen – partial pressure of 25 mTorr
 - no additional final EP treatment (as in standard surface treatment) necessary
 - high Q₀ and high gradients reported, [A. Grasselino et al. 2017 Supercond. Sci. Technol. 30 094004] but process still not reproducible in every attempt
- → goal: definition of stable recipe for high-performance cavities

heat treatments in a partial pressure of nitrogen

nitrogen infusion as promising approach

- nitrogen infusion yields significant development of quality factors
 - baseline recipe: 3 hours heat treatment at 800°C, then 48 hours 120°C in UHV with nitrogen – partial pressure of 25 mTorr
 - no additional final EP treatment (as in standard surface treatment) necessary
 - high Q₀ and high gradients reported, [A. Grasselino et al. 2017 Supercond. Sci. Technol. 30 094004] but process still not reproducible in every attempt
- → goal: definition of stable recipe for high-performance cavities
- two R&D approaches at DESY
 - in-situ infusion of samples followed by surface characterization techniques
 - → understanding from surface physics point of view
 - heat treatment of cavities and samples
 - vertical tests of cavities
 - surface analysis of samples
 - ➔ correlation of surface and RF properties

nitrogen infusion at Nanolab

surface characterization shows no nitrides

- to understand role of nitrogen in infusion process
 - sample treatment in UHV chamber on high-purity, UHV-annealed single crystal Nb (100) – as a model system
 - surface analysis wrt. oxides, nitrides, hydrides and interstitials
 - in-situ XRR and GIXRD experiments, XPS, SEM, AFM

[Dangwal Pandey, A., Dalla Lana Semione, G., Prudnikava, A. et al. J Mater Sci (2018) 53: 10411]

nitrogen infusion at Nanolab

surface characterization shows no nitrides

- to understand role of nitrogen in infusion process
 - sample treatment in UHV chamber on high-purity, UHV-annealed single crystal Nb (100) – as a model system
 - surface analysis wrt. oxides, nitrides, hydrides and interstitials
 - in-situ XRR and GIXRD experiments, XPS, SEM, AFM

[Dangwal Pandey, A., Dalla Lana Semione, G., Prudnikava, A. et al. J Mater Sci (2018) 53: 10411]

- results of in-situ XRR & XPS:
 - NbO phase present
 - but no nitride phase identified after nitrogen infusion process
 - no other unexpected layers
 - natural oxides re-grow after venting

Detec

evolution of infusion process at DESY

large parameter space to be controlled

 first tests couldn't reproduce Fermilab results

evolution of infusion process at DESY

large parameter space to be controlled

- first tests couldn't reproduce Fermilab results
- star-like structures found on samples
- possible hydro-carbon contamination of furnace
- process parameters compared to setups at other labs
- close collaboration with Fermilab

'star-like' precipitates identified as carbon using advanced surface analysis techniques

evolution of infusion process at DESY

large parameter space to be controlled

- first tests couldn't reproduce Fermilab results
- star-like structures found on samples
- possible hydro-carbon contamination of furnace
- process parameters compared to setups at other labs
- close collaboration with Fermilab

- furnace environment improved, studies for further optimization ongoing
- precipitates depending on grain orientation observable
 - → hexagonal β -Nb₂C phase?
- correlation to cavity performance?

'star-like' precipitates identified as carbon using advanced surface analysis techniques

summary and outlook

answers raise more questions

- large grain cavities very promising
 - vertical / module test
- preparation serial cavity production: specification for material, mechanical forming and welding process started
- vertical and module tests ongoing
- systematic re-analyzing of older test
- ➔ production process for high-performance cavities

summary and outlook

answers raise more questions

- large grain cavities very promising
 - vertical / module test
- preparation serial cavity production: specification for material, mechanical forming and welding process started
- vertical and module tests ongoing
- systematic re-analyzing of older test
- ➔ production process for high-performance cavities
- no nitride phase on surface found
- effects on grain boundaries and due to grain orientation under study
- impact of infusion temperature will be analyzed
- correlation of sample surface to cavity performance
 - cutting of cavity for direct surface investigation
- analysis of other interstitial gases planned
- → stable and reproducible recipe for nitrogen infusion

SRF R&D at DESY in full swing

closing remarks

- two aspects of SRF R&D towards and continuous wave upgrade of E-XFEL
 - large grain R&D shall provide cavities with naturally high Q₀ and large accelerating gradients
 - nitrogen infusion R&D shall allow for a surface treatment improving standard cavities to high-performance cavities with high Q₀ at large gradients
- goal of SRF R&D @ DESY:
 136 high-performance cavities for low energy section of European XFEL

SRF R&D at DESY in full swing

closing remarks

- two aspects of SRF R&D towards and continuous wave upgrade of E-XFEL
 - large grain R&D shall provide cavities with naturally high Q₀ and large accelerating gradients
 - nitrogen infusion R&D shall allow for a surface treatment improving standard cavities to high-performance cavities with high Q₀ at large gradients
- goal of SRF R&D @ DESY:
 136 high-performance cavities for low energy section of European XFEL

- thanks to the complete DESY and Nanolab SRF team, I gave this talk on their behalf
- special thanks to Detlef Reschke, Julien Branlard, Christopher Bate and Guilherme Dalla Lana Semione for providing material from their talks and posters
- only collaboration with many partners allows for complex R&D work

