

First Beam Operation of a Superconducting CH-Cavity

T. Kürzeder¹

K. Aulenbacher^{1,4}, W. Barth^{1,2}, M. Basten³, M. Busch³,
F. Dziuba¹, V. Gettmann¹, M. Heilmann², J. List¹,
M. Miski-Oglu¹, H. Podlech³, A. Rubin³, A. Schnase³,
M. Schwarz³, S. Yaramyshev²

¹HIM, Helmholtz Institute Mainz, Mainz, Germany ²GSI Helmholtzzentrum, Darmstadt, Germany ³IAP, Goethe Univ. Frankfurt, Frankfurt, Germany

⁴KPH, Johannes Gutenberg Univ., Mainz, Germany

T. Kürzeder, First beam operation of a superconducting CH-cavity

- Motivation
- CH-cavity (design & tests)
- Beam acceleration (demonstrator)
- Next steps (advanced demonstrator)
- cw Linac design

- Reactions at the Coulomb-barrier \rightarrow Production of SHE
- Operation cw
- Mass / charge 6
- beam current $\leq 1 \text{ mA}$
- Injection energy 1.4 MeV/u
- Final energy 3.5 7.3 MeV/u

Production of Element ²⁸⁸₁₁₅uut, ²⁸⁹₁₁₅uut, 30 *events*

(D. Rudolph, Lund Univ., PRL 111, 112502 (2013))

	GSI- Unilac	cw-Linac
Beam intensity (particle/s)	$6 \cdot 10^{12}$	$6 \cdot 10^{13}$
Beam on target	3 weeks	2 days

HIM tz-Institut Mainz

r.t. 340 MHz

GSI p-linac prototype

s.c. 360 MHz

Prototype

s.c. 217 MHz Demonstrator cavity (CH0)

 Multigap drift tube cavity for the acceleration of protons and ions in the low and medium energy range

 $(150 - 800 \text{ MHz}, 1 - 150 \text{ MeV/u}, \beta = 0.05 - 0.6)$

- Drift tubes are alternating connected to "+" and "-" potential
- **C**ross-bar-**H**-mode cavity → CH-cavity

HIM Helmholtz-Institut Mainz

First CH-cavity for cw-Linac project (CH0)

Parameters 217 MH	Iz Cavity CH	0
β		0.059
Frequency	MHz	216.816
Accelerating cells		15
Effective length $(\beta \lambda)$	mm	612
Diameter (inner)	mm	409
Tube aperture	mm	$18\ /\ 20$
Wall thickness	mm	4
df/dp^*	$\mathrm{Hz}/\mathrm{mbar}$	50
G	Ω	52
R_a/Q_0		3240
$R_a R_S$	${ m k}\Omega^2$	168
E_a (design)	MV/m	5.5
E_p/E_a		6.3
B_p/E_a	$\mathrm{mT}/(\mathrm{MV}/\mathrm{m})$	5.7

*without He vessel

F. Dziuba, et al., First Cold Tests of the Superconducting cw Demonstrator at GSI, RUPAC2016, St. Petersburg, Russia, (2016)

Assembly of Acceleration String at GSI (2017)

Upgrade of clean room

- Outer space: ISO-8 \rightarrow ISO-6
- Inner space: ISO-4

Integration into Cryostat

HIM Helmholtz-Institut Mainz

Demonstrator Beam Commissioning Environment 🛛 📻 🎞

HIM Helmholtz-Institut Mainz

Time of Flight Measurements Ar⁹⁺

- Measurement of transient signal induced by traveling bunch
- Acceleration! Energy gain of 0.5 MeV/u
- \rightarrow systematic scan of rf-phase and amplitude

Beam input parameter

- 50 Hz, 5 ms (25% beam duty)
- cw (RF duty)
- 1.5pµA (particle current)

Beam output parameter

- Design energy of 1.86 MeV/u
- 95% of beam transmission
- 15% of trans. emittance growth

• 0.25 ns bunch length (
$$\Delta \phi = 20^\circ$$
)

- Variation of phase and amplitude of RF power •
- Beam transmission is high for most of RF phases ۰
- 2.2 MeV/u reached at 830 W of forward power •
- Energy variation 1.2 2.2 MeV/u \rightarrow Feature of EQUUS beam dynamics ۰

IM

- Variation of phase and amplitude of RF power
- Beam transmission is high for most of RF phases
- 2.2 MeV/u reached at 830 W of forward power
- Energy variation 1.2 2.2 MeV/u \rightarrow Feature of EQUUS beam dynamics

Overall we accelerated different Ar and He ions for 12 days (2 < A/Z < 7). Measuring energy, transmission, bunch profiles and emittances. Matching the beam with r.t. bunchers was very succesful and ensured excellent beam quality in a wide range of applied rf parameters.

Cavity Assembly, Preparation and Testing at HIM 🛛 🕞 👫

Infrastructure in Mainz:

- Clean room environment
- High Pressure Rinsing
- Further improvement of cavity performance
- Cavity bakeout
- Setup for cavity RF testing at 4 K & 2 K

Cavity Assembly, Preparation and Testing at HIM $\mathbf{I} = \mathbf{I} = \mathbf{I}$

Advanced Demonstrator

Standard Cryomodule Layout

- New cryo module layout containing demonstrator CH cavity, 2 short CH cavities, 1 buncher and 2 solenoids
- Simplified cavity design (easier manufacturing & surface processing)
- CH1 & CH2 are already in production (delivery at 4th quarter of 2018)
- Tendering for cryostat at 3rd quarter of 2018

Design parameters of short CH cavities CH1 & CH2

β		0.069
Frequency	MHz	216.816
Cell number	#	8
Length ($\beta\lambda$ -definition)	mm	381.6
Cavity diameter (outer)	mm	400
Cell length	mm	47.7
Aperture diameter	mm	30
Dynamic bellow tuner	#	2
Wall thickness	mm	3-4
Accelerating gradient	MV/m	5.5
df/dp	Hz/mbar	-13
E_{p}/E_{a}		5.2
$\mathbf{B}_{\mathbf{p}}^{\mathbf{r}}/\mathbf{E}_{\mathbf{a}}^{\mathbf{r}}$	mT/(MV/m)	<10
G ^r	Ω	50
R_a/Q_0		1070

PhD thesis of M. Basten, IAP, Frankfurt University

Total of 12 CH cavities

IM

Each cryo module contains 3 CH-cavities + Re-

Buncher + 2 solenoids

Variable end energy

3.6 - 7.6 MeV/u

Cryo Module	Cavity	Output energy (MeV/u)		
		A/Z=6	A/Z=3	A/Z=1
	HLI	1.4	1.4	1.4
CM1	CH0	2.1	2.2	3.0
	CH1	2.6	3.0	4.2
	CH2	2.9	3.6	4.6
CM2	CH3	3.4	4.3	5.7
	CH4	3.8	4.8	6.3
	CH5	4.2	5.5	7.7
СМ3	CH6	4.7	6.2	8.6
	CH7	5.2	7.0	9.9
	CH8	5.8	7.8	10.9
СМ4	CH9	6.4	8.7	12.3
	CH10	7.0	9.5	13.2
	CH11	7.6	10.5	14.6

Thank you very much for your attention!

Collaboration partners

GSI

HIM/JGU Mainz

IAP/JGU Frankfurt

00/0045	
02/2015	Start POF3
09/2016	Ordering of two short CH-cavities
02/2018	Link of testing area to STF cryoplant
10/2018	Tendering of cryostat
11/2018	Delivery of short cavities
02/2019	Modification of radiation protection shelter @GSI
11/2019	Delivery of cryostat
02/2020	Assembly of cryomodule @ HIM
10/2020	Beamtest @ GSI
>12/2020	User Operation
र्	イ

Emittance measurements

1.41 MeV/u

Ion species: 40 Ar ${}^{11+}$, 40 Ar ${}^{9+}$, 40 Ar ${}^{6+}$ (A/q=6.7), 50 Hz, 5ms, 25% beam duty, cw (rf duty), 1.5pµA (particle current), ≈95% (beam transmission), 0.460 MeV/u (Δ W), transv. emittance growth ≈12%

1.86 MeV/u

What is the advantage of a sc CH Cavity?

Power Consumption & Emitter Current

Total losses inside the cavity

Fowler-Nordheim plot

for 2 different surface qualities

After 1. RF test

Rapidly increase of total losses

at $E_a = 5 \text{ MV/m} (E_p = 32 \text{ MV/m})$

Activation of field emitters

After 2. RF test (advanced HPR)

- Extremely reduced total losses
- Minor field emitter activation

at
$$E_a = 7.8 \text{ MV/m} (E_p = 49 \text{ MV/m})$$

- Superconducting solenoids were ramped at 9.3 T (0.2 A/s)
- Standby losses of cryostat 3 W
- Transversal drift of components during cooldown ±0.15 mm (tolerance: ±0.2 mm)

Surface Preparation

Before assembly of He vessel (before 1st cold test):

- 1. BCP 50 μm
- 2. BCP 25 μm (after welding of static tuners)
- 3. BCP 3 μm
- HPR for 2 h, 12 h drying, assembly of antennas
- HPR for 12 h (from both sides repectively), 12 h drying

After assembly of He vessel (after 1st cold test):

- HPR for 12 h (from both sides repectively), 12 h drying
- Final welding of He vessel

HPR only along beam axis!

FAIR requirements:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element" requirements:

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

"Material Science" additional requirements:

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- Continuous Beam Energy Variation (1.5 10 MeV/u)

H field

E field along beam axis

- HLI provides Ar¹¹⁺, Ar⁹⁺, Ar⁶⁺, He²⁺ @ 1,4 MeV/u
- Steering magnets
- Additional Re-Buncher
- Quadrupole doublet
- Profile Grid
- Phase probes for TOF measurement
- Beam current transformers for transmission measurement
- Bunch shape monitor (Feschenko monitor)
- Slit-Grid emittance measurement device
- Transversal matching is measured in 2015
- 6d characterization of the beam
- \rightarrow Matching in 6d