Future of Silicon Trackers (at LHC and beyond)

Heinz Pernegger / CERN EP Department

With many thanks to my colleagues who kindly provided material Frank Hartmann, Dominik Dannheim, P. Collins, Petra Riedler, Norbert Wermes

June 14, 2018

1

Outline

- Silicon Tracker Upgrades towards the High-Luminosity LHC
- Developments for hybrid and monolithic pixel detectors
- Silicon tracker combined with timing capabilities
- Future in silicon to module integration

Our starting point – LHC Silicon Trackers in operation

Current silicon tracking detectors at LHC are composed of Silicon Strip and / or Silicon Hybrid Pixel detectors

High Luminosity - LHC

HL-LHC (High Luminosity LHC)

- Collisions to start mid-2026
- Maximum leveled instantaneous luminosity of 7.5 x 10³⁴ cm⁻² s⁻¹
 - Currently exceeed >1 x 10³⁴ cm⁻² s⁻¹
- ~3000 fb⁻¹ Integrated luminosity to ATLAS/CMS over ten years
- 200 (mean number of) interactions per bunch crossing.
 - Original design for 25 interactions per bunch crossing

June 14, 2018

Challenges for the future

- Increased luminosity requires
 - Higher hit-rate capability
 - Higher segmentation
 - Higher radiation hardness
 - Lighter detectors
- Radiation hardness improvement compared to now
 - Phase-2 approx. factor 10

Tracking - momentum resolution

Impact parameter

- Secondary vertices reconstruction strongly depends on impact parameter resolution
 - d0 in r/phi (bending plane)
 - Z0 alone beam direction

- Impact parameter resolution is strongly effected by
 - Intrinsic point resolution and alignment at higher momentum
 - **Multiple scattering in detector material** (in particular for low pt tracks)
- Look for tracking solutions which combine small pixels with thin detectors (particular on the innermost layers)
- They need to be **radiation hard** and include complex readout architectures to cope with **high hit rates**

Way to High Luminosity

- Upgrade of Accelerator System to achieve high beam intensity
- Upgrade of Experiments:
 - Tracker will be replaced for better precision and high rates & radiation
 - New Trigger systems are essential to select rare events & new physics
 - New DAQ system & Reconstruction software to cope with enormous data volume

2014: ATLAS Installation of IBL

"Insertable-B-Layer " system

ATLAS 4 Layer Pixel detector system

- 2016/17: CMS
- Installation of new 4-Layer
 Pixel Detector for CMS
- Complete replacement for better performance with new sensors, FEchips, mechanics, services

11

- 2019/20: ALICE ITS
- First LHC Tracker based on CMOS monolithic sensors
- 7 layer/10m² system of CMOS sensors will replace hybrid pixel+silicon-drift+strip ITS
- Better tracking and & vertexing performance combined with high readout rate

June 14, 2018

Helmholtz - 4th Matter and Technology

Today

• 2019/20: LHCB VeloPix

- New VeloPix Pixel Detector
 replaces strip detector
 - Improve sensitivity to very rare decays
 - High data rate capability!
 - Readout @ 40MHz

13

- **2024/25: Phase 2 ATLAS** ATLAS completely replace its trackers
 - ~ 160 m² silicon strips
- ~10 m² silicon pixel

June 14, 2018

The environment at HL-LHC

- Radiation level, hit rates and bunch structure for silicon detector dominate the development of sensors and Front-end electronics
 - 25ns BC
 - L1 trigger rate (e.g. ATLAS 4MHz)

- Strip layers
 - NIEL ~ 10¹⁴ neq/cm²
 - TID ~ 10Mrad
 - Larger area O(100m²)
 - Outer pixel layers
 - NIEL ~ 10¹⁵ neq/cm²
 - TID ~ 50Mrad
 - Larger area O(10m²)
 - Inner layers
 - NIEL ~ 5x10¹⁵ to 10¹⁶ neq/ cm²
 - TID ~ 1Grad
 - Smaller area O(1m²)

Future Trackers at ATLAS and CMS

CERN-LHCC-2017-021 ; ATLAS-TDR-030

Einsweiler, Kevin; Pontecorvo, Ludovico

Technical Design Report for the ATLAS Inner Tracker Pixel Detector

Collaboration, ATLAS

CERN. Geneva. The LHC experiments Committee ; LHCC

(technical design report)

k_einsweiler@lbl.gov on 23 Sep 2017

- k_einsweiter@ibLgov on 23 Sep 2017 Detectors and Experimental Techniques
- This is a placeholder for the final document.

Sensor active thickness 100 - 300 μm

ATLAS and CMS Tracker upgrades

- Why has CMS 6 and ATLAS *only* 4 outer strip layers?
 - You need to count "OFFLINE" and "L1-trigger" layers separately!
 - With a fine granular pixel, only *few* outer layers are needed to measure p_T
 - **Few** = <u>enough + redundancy</u> -- 4 seems a perfect number even for an inner 4-layer pixel detector
 - Why ATLAS has 5 pixel layers and CMS only 4?
 - CMS has in fact 7 "pixel" layers, counting the 3 PS-layer with 1.5mm macropixels

Hybrid pixel sensors

Special sensor for e.g. extreme radiation hardness, timing

Dedicated FE-chip eg. for very high hit rates, digital functionality (memory, TDC,...)

- Front-end chip
 - Depending on application we need specialized FE-ASIC
 - Complexity of designs are driven by experimental needs
 - Increasing functionality on chip drives the development towards 65nm and smaller node size CMOS processes

Sensor developments

- For very high radiation and track density (e.g. 3D sensors, active edge planar)
- Sensors for 4D tracking, i.e. spatial and time information (e.g. pixel sensors with trench electrodes)

Sensors for hybrid detectors

- 3D and Planar sensors developed to radiation hardness of >10¹⁶ n_{eq}/cm² for HL-LHC on 4" 6" wafer
 - Further development focuses on
 - Better lithography for smaller pixels on 3D
 - Optimizing active edge on planar
 - Move to 8" wafers
- Maybe in the future: special sensor for timing application in pixel sensors?

ATLAS Itk 3D

Next to the beam pipe (Pixel)

Digital "sea"

Analog "island

Many commonalities:

- "Classical" hybrid pixel detectors with bump-bonding
 - THIN Planar n-on-p or 3D detectors (inner layers)
 - Both need coating to prevent sparking
 - Common R&D on chip **RD53**A –
 65nm TSMC
 - Modules: Doublets, Quads chip of singlets (ATLAS only)
- Common design of pixel FE-IC implemented with different matrix
 size
 Sigle analog
 Front End
 - Sensor 50 x 50 µm ATLAS
 - Sensor 25x100 µm CMS
- Serial Powering (part of RD53)
- Both detectors up to η =4
- Both easily extractable (half-shells) • Surface: 2*CMS < 1*ATLAS

Away from the beam pipe (Strips)

All Stereo - chips on sensor allowing different granularity

F. Hartmann /JHST2018018

Functionality and integration

• E.g. combine tracking with timing

- FE-chip with very high data output (>20Gbps/ASIC) and <1ns timeresolution
- Requires high power and good cooling in a thin hybrid assembly

High density interconnection between sensor and dedicated FE-chip:

Essential R&D is also required forfuture integration between ICs

- 3D stacking of dies with different functionality
- Silicon interposer

LHCb VeloPix Upgrade for LS2

P. Collins / CERN

- All-pixel detector 55x55 μ m² n-in-p 200 μ m thick pixels sensor, readout with VELOPIX
 - Very high (8x10¹⁵ n_{eq} /cm² for 50 fb⁻¹until LS4) & non-uniform irradiation (~ r ^{- 2.1})
- Go closer: distance to beam 51 mm instead of 8.2 mm
- Sensors on CO₂ micro-channel cooling
- No hardware trigger
 - Full 40 MHz readout software HLT 1 / 2 → 1-2 MHz / 20-100 kHz
 - 20 Gbit/s for central ASICs

Silicon trackers for ee collisions (e.g. CLIC)

Vertex detector:

- efficient tagging of heavy quarks through precise determination of displaced vertices:
 - → good single point resolution: σ_{SP} ~3 µm
 - \rightarrow small pixels <~25x25 µm², analog readout
 - → low material budget: $\leq 0.2\% X_0$ / layer
 - \rightarrow low-power ASICs + air cooling (~50 mW/cm²)

Tracker:

- Good momentum resolution: $\sigma(p_T) / p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$
 - \rightarrow 7 µm single-point resolution (~30-50 µm pitch in R ϕ)
 - → many layers, large outer radius (~140 m² surface)
 - \rightarrow ~1-2% X0 per layer
 - \rightarrow low-mass supports + services

Both:

- 20 ms gaps between bunch trains
 → trigger-less readout, pulsed powering
- few % maximum occupancy from beam backgrounds
 → sets inner radius and limits cell sizes
 - → time stamping with ~5 ns accuracy
 - → depleted sensors (high resistivity / high voltage)
- moderate radiation exposure (~10⁴ below LHC!):
 - NIEL: < 10¹¹ n_{eq}/cm²/y

```
CERN ID: < 1 kGy / year
```

oril 2018

Vertex-detector simulation geometry

Tracker simulation geometry

4.6 m D. Dannheim / CERN

CLICdp Advisory Board, Vertex & Tracker Technologies

CLIC pixel-detector technology R&D

	Sensor + readout technologies		es		
Sensor + readout technology	nd out	Currently consid	ered for	Beam	test
Bump-bonded Hybrid planar sensors		Vertex			
Capacitively coupled HV-CMOS sensors		Vertex			
Monolithic HV-CMOS sensors		Tracker			
Monolithic HR-CMOS sensor		Tracker			
Monolithic SOI sensors		Vertex, Tracker		7 Timepix3 Cracow SOI DU elescope planes	JT C3PD+CLICpix2 Caribou r/o assembly board
CLICpix + 50 µm sensor	2 glue ass.	ATLASPIX HV-CMOS	INVESTIGATOR HE	R-CMOS	racow SOI
Tom Taxes of the second	Dete	Cooling	S weight supports	Detector assembly	

- Challenging requirements lead to extensive detector R&D program
- ~10 institutes active in vertex/tracker R&D

CERN

2018

Collaboration with ATLAS, ALICE, LHCb, RD53, AIDA-2020

D. Dannheim / CERN

CLICdp Advisory Board, Vertex & Tracker Technologies

ELAD sensors

- Position resolution in very thin sensors so far limited to ~pixel pitch / $\sqrt{12}$ (almost no charge sharing)
- New sensor concept for enhanced charge sharing Enhanced LAteral Drift sensors (ELAD), H. Jansen (DESY/PIER)
- Development supported by Helmholtz
- Deep implantations to alter the electric field
 → lateral spread of charges during drift, cluster size ~2
 → improved resolution for same pitch
- Challenges:
 - Complex production process, adds cost
 - Have to avoid low-field regions (recombination)
- Ongoing TCAD simulations:
 - Implantation process
 - Sensor performance for MIPs
- First production in 2018: generic test structures, strips and test sensors with Timepix footprint (55 µm pitch)

TCAD simulation of current from MIP

Monolithic Silicon Pixel Detectors

•

Depleted Monolithic Active Pixel Sensors

- Depletion is key for fast signal response and radiation hardness
- Thin detector with high granularity

- FE electronics is integrated in sensor and produced on commercial CMOS processes
- Allows very thin sensors to achieve ultimate low mass trackers (0.3% X/X₀)
- High volume and large wafers (200mm) reduces detector costs and allows large area pixel detectors
 - Saves costs of bump-bonding (cost driver for hybrid silicon detector systems

DMAPS/CMOS for Future Trackers

	RHIC STAR	LHC - ALICE ITS	CLIC	HL-LHC Outer Pixel	HL-LHC Inner Pixel	FCC pp
NIEL [n _{eq} /cm ²]	10 ¹²	10 ¹³	<10 ¹²	10 ¹⁵	10 ¹⁶	10 ¹⁵⁻ 10 ¹⁷
TID	0.2Mrad	<3Mrad	<1Mrad	80 Mrad	2x500Mrad	>1Grad
Hit rate [MHz/cm ²]	0.4	10	<0.3	100-200	2000	200-20000

Monopix & AtlasPix & Malta Sensor

Advances in commercial CMOS technologies combined with dedicated designs allowed significant progress from STAR to ALICE to ATLAS in areas like radiation hardness, response time, hit rates

Alpide Sensor

- Strong interest for R&D to fully exploit potential of MAPS in future Trackers
 - High granularity, Low material budget and power, Large area at reduced cost (cf hybrid)
 - CMOS foundries offer substantial processing power to enable significant performance gains

ALICE Inner Tracking System Upgrade at LHC

Based on high resistivity epi layer MAPS

3 Inner Barrel layers (IB) **4** Outer Barrel layers (OB)

Radial coverage: 21-400 mm

~ 10 m²

 $|\eta| < 1.22$ over 90% of the luminous region

0.3% X₀/layer (IB) 0.8 % X₀/layer (OB)

Radiation level (L0): 700 krad/10¹³ n_{eq} cm⁻² Installation during LS2 (2019-2020)

ALICE ITS Upgrade: High resistivity epi layer MAPS

N-well collection electrode in high resistivity epitaxial layer (>1kohmcm) TowerJazz 0.18 um CMOS Imaging Process

- Special deep p-well for full CMOS within matrix (based on experience of RAL)
- 6 metal layers -> suited for high density, low power circuitry
- Small n-well diode (2-3 µm diameter), ~ 100 times smaller than pixel → low capacitance
- 3 nm gate oxide -> TID tolerant
- Epi thicknesses 20-40 µm tested → higher cluster signal

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

NWELL diode output signal:

 $V \sim Q/C$

- Increase charge collected by the central pixel
- Minimize capacitance:
 - diode surface
 - depletion volume
 - \rightarrow (reverse substrate) bias

In production

WEICMOS Pixel Sensors for the ALICE Upgrade

Different CMOS sensor designs

- Purse different design approaches for optimal performance
 - Large electrodes

Small electrodes

- Electronics in collection well
- No or little low field regions
- Short drift path for high radiation hardness
- Large(r) sensor capacitance (dpw/dnw) ->higher noise and slower @ given pwr
- Potential cross talk between digital and analog section

- Electronics outside collection well
- Small capacitance for high SNR and fast signals
- Separate analog and digital electronics
- Large drift path -> need process modification to usual CMOS processes for radiation hardness

 "Burried" electrodes (SOI)

- Electronics and sensor in separate layer
- Can use thick or thin high resistivity material and HV (>200V)
- Special design/ processing to overcome radiation induced charge up of oxides

Radiation hard CMOS sensor

CMOS sensor developments for ATLAS

- Collaboration of 25 institutes
- Targeted towards outermost ITK pixel layer

HVCMOS sensors (AMS 180nm)

Developments in context of ATLAS and μ 3e experiment

See I. Peric's talk Wednesday "Integrated sensors in particle physics"

Preliminary results with large electrodes

Novel CMOS Pixel Sensors with small electrodes

As R&D for the ALICE upgrade, CERN has developed in collaboration with Tower Semiconductor a process modification that allows full depletion of the high resistivity silicon layer

The process modification requires a single additional process mask with no changes on the sensor and circuit layout

Ø

Foundry Standard Process

Vertical full depletion Lateral partial depletion Collection time < 30ns $(V_{bb}$ =-3V) Suitable for up to 10¹⁴ n/cm²

Epi-layer fully depleted Operational at 10¹⁵ n/cm²

Modified process CERN/Tower

W. Snoeys / CERN

- Explore sensor designs with small electrode to minimize pixel capacitance
- Small capacitance best for low noise & low power operation
- Radiation hardness requirements for HL-LHC requires dedicated optimization of implants under deep p-well for full depletion and to minimize charge loss after irradation -> ongoing RD in ATLAS

June 14, 2018

MALTA & MonoPix – Novel depleted CMOS sensors with small electrodes

- Monolithic pixel prototype sensor for the outer layers of the ATLAS Itk Pixel outer layer
- Full-scale demonstrators with different readout architectures and optimized analog performance
 - MALTA: 20x22 mm (full size)
 - MonoPix : 20x10 mm (half size)
- The ATLAS "MALTA" and "MonoPix" chip for high hit rate suitable for HL-LHC pp-collisions
 - Radiation hard to >10¹⁵ n/cm²
 - Shaping time 25ns (BC = 25ns)
 - MALTA: Novel asynchronous readout architecture for high hit rates and fast signal response
 - MonoPix: Synchronous Column drain readout architecture

Sensors received back in Jan / both sensors functional and currently under test

Preliminary results with small electrodes

2017 Investigator measurements

Helmholtz - 4th Matter and Technology

2018 MALTA & TJMonoPix measurements

- Both chips work same FE design, different readout architecture
- Tests ongoing (lab, beam tests, irradiations) show excellent ENC ~ 8e- and threshold dispersion ~ 15 e-
- Irradiation tests ongoing

Enhanced Performance

 Achieve better spatial resolution, fast timing and high rate capability through higher integration density for future trackers

Now in 0.18 μm

Q/C > ~ 0.25 fC / 5 fF = 50 mV

- ALPIDE: 40 nW/pixel (analog)
- MALTA/Monopix: 1 µW /pixel (25ns)
- Analog power in matrix dominant

Pixel pitch \approx sensitive layer thickness \approx 30 μ m

Position resolution ~ 5 μm

Matrix hit rate capability:

 MALTA matrix > 100 Mhit/mm²/s (but cannot cope at periphery)

Deeper submicron

Q/C >>

- Analog power will go close to zero
 Pixel pitch ≈ sensitive layer thickness ≈ 5-10 µm
 - Position resolution ~ 1-2 μm

Matrix hit rate capability:

10's of GHz/mm² (but need to cope at periphery)

Large sensors & systems

- Developed "stitched" designs for large sensors and special geometries
 - Chain sensors for large area trackers and large acceptance
 - Exploit mechanical flexibility of thin sensors in cylindrical or spherical geometry

Cylindrically Curved CCD (Convex)

- CMOS sensor key advantage is large volume production on 200/300mm wafers
- Improve ratio between chip and total detector area through stitching

Explore new solutions for data aggregation and transmission for high data rates

E.g. demonstrator module with sensor to sensor interconnection and high-speed data readout via photonics chip (WP on data transmission)

Timing for tracking

Need sub-nanosecond track time to suppress background in environments with large pile-up (HL-LHC, FCC) \rightarrow 4D tracking

Separate timing layers with coarser granularity → timing for reconstructed tracks (e.g. HL-LHC upgrades ~30 ps) Timing within pixel layers → time info for pat rec (e.g. LHCb Upgrade II **20-200 ps,** depending on pixel size, radiation)

See N. Cartiglia's talk Tuesday "Ultrafast timing detectors in particle physics"

→ Trade-off between time resolution and pixel size / layer thickness → FCChh needs track timing at **5 ps** up to $6x10^{17} n_{eq}/cm^2$ fluences

N. Cartiglia, H. Sadrozinski

Low Gain Avalanche Detectors (LGAD): Multiplication of charges (~10-100x) in thin gain layer \rightarrow fast rise time, increased S/N

- Several vendors: CNM, FBK, HPK
- Reached ~30 ps for few mm² size sensors
 → considered for HL-ATLAS/CMS/LHCb timing layers
- Limiting factors for time resolution:
 - Weighting **field uniformity** → favors larger pixels
 - Radiation effects → ok up to ~10¹⁵, mitigation measures under study for higher fluences
 - r/o electronics + clock distribution → IC work package
- R&D to achieve radiation hardness
 - Variation in doping to limit gain loss after irradiation
- RD for larger fill factors (currently ~70-00 μm inactive region between pixels):

From sensors to modules to silicon detector systems

Module Construction & Interconnect

- Silicon modules are complex structures composed of many components and usually are installed in areas with limited access \rightarrow **new module designs**
- Optimising each component, and validating module concepts is key to a successful operation \rightarrow reliability

LHCb VELO

ALICE ITS stave

CMS Tracker

- Module building and interconnection is used in all projects on various scales: numbers, complexity, environment,...
- Many different components involved in this step (sensors, interconnects, ASICS, PCB, support, etc.)
- Mostly done "in house" but upcoming projects are also investigating outsourcing to industry

Hybrid - Interconnection

- Hybrid pixel detectors are costly because of cost of die-die interconnection
- New interconnection technologies use waferwafer or wafer-die
- Examples copper-copper direct bonding (e.g. IMEC, LETI) or hybrid direct bonding (Ziptronic DBI)
- Wafer level assembly requires through silicon vias (TSV) to bring electrical connections
 - Via-last examples and Cu redistribution layer on wafer back-side by e.g. Fraunhofer IZM for ATLAS FEI4
- All these technologies are industry-driven and we are technology users
- Very good relation to dedicated industry in longer-lasting projects are essential to gain satisfactory results for HEP, 2018

IMEC direct bonding

Module Construction & Interconnect

- Investigation of new materials (graphene,...) and thermal management concepts to work out new and reliable module concepts
- Reduce CTE miss-match, material and simplify assembly process by exploring new techniques (additive manufacturing, printing,...)

LED Professional, 13 Sep 2011. https://goo.gl/aVkLzo

http://ieeexplore.ieee.org/document/1580600/

System design for future trackers

- Future silicon tracker modules will need tight integration with data transmission and powering systems
 - efficient assembly and packaging technique
 - Serial powering to reduce cables
 - High hit rates and/or trigger-less readout results in very high data rates:
- Explore new solutions for data aggregation and transmission from sensor to stave end
 - E.g. demonstrator module with sensor to sensor interconnection and highspeed data readout via photonics chip

Characterization Techniques for silicon

- New challenges for sensor characterization:
 - Sensors getting smaller and more integrated + have new functionalities (e.g. gain)
 - Harder to access processing properties (e.g. CMOS)
 - Environment gets harsher (higher fluences)
- Characterization tools have to follow
 - advanced TCT, beam telescopes, flexible r/o systems, ...

High-rate beam telescope

CaRIBOU universal r/o system

Summary

- The required functionality from silicon tracking detectors leads to more and more complex detector systems to cope with accelerator's present and future performance
- The need for these new complex systems has triggered a large RD effort in the area of sensors, electronics and detector integration
- Hybrid pixel detector detector for HL-LHC cope with enormous radiation level
 and hit rates together with sophisticated on-chip data handling
- Monolithic CMOS sensors are being developed for high-radiation environments with complex readout architectures for future large pixel systems
- The **combination of timing and tracking** leads to the development of new sensors for new level of performance in future silicon system
- Developing and integrating these sensors to modules and systems leads to many new RD collaborations with semiconductor industry for manufacturing and post-processing

Backup slides

ATLAS CMOS Pixel Collaboration Collaboration of ~25 ATLAS ITK institutions

Hitrates per module in different (pixel) layers

- Example Atlas ITK pixel simulation of pixel 50x50x (150µm depletion)
- Collisions per bunch crossing μ =200
- Module size 33.8mm (phi) x 40.3mm (z) (or 16.9x40.3 for L0)
- Look at average number of hits per module or per column per BC
- <hits/mod> Layer 0 = 464 and Layer 1 = 289
- <hits/mod> Layer 2 = 59, Layer 3=40 and Layer 4 = 29
- Tails up to 4x average
- The high hitrate dominates the complexity of design in Front-end IC as well as data transmission off the detector
 E.g. large memory on FE chip and number of data link from modules to readout system

k)

Silicon pad detectors

Si pad detectors with ~0.5-1 cm² area for active layers of fine-grained sampling calorimeters

CMS-HGCAL sensor wafer

CMS-HGCAL sensor leakage currents

- State of the art: CMS-HGCAL
 - 600 m² of silicon pads, fluence up to $10^{16} n_{eq}/cm^2$,
 - <100 ps timing per cell at 3.5 MIPs and S/N~40
- Si pad detectors under consideration for EM and forward calorimeters at future facilities (LHCb Upgrade II, ILC, CLIC, FCC)
- Many challenges at system level: readout ASICs, clock distribution, module design, interconnects, cooling, automated production

→ Mainly addressed in **Calorimeter** and **IC** WGs

- Silicon-specific R&D needs (WG 1):
 - Sensor technology: planar, passive CMOS, LGAD
 - Sensor characterization and simulation
 - Understanding/mitigation of radiation effects

Device Simulation and Modelling

- Microscopic simulations for in-depth understanding of charge collection and radiation effects in silicon increasingly important:
 - very high doses/fluences at HL-LHC, FCC; complex sensors (e.g. CMOS, LGAD)

- Significant progress on **defect characterization** over last decade
- knowledge about defects is essential to understand the physics of radiation damage and to perform device simulations and defect engineering

M. Moll

- Future R&D in a large collaboration (RD50) to improve understanding:
 - Full identification of the structure of the defects
 - Predictive Modelling, improved TCAD simulations
 - Defect generation and modelling at very high fluences
 - Note: Many characterization tools don't work properly for extreme fluences
 - Better radiation background simulation → reduction of safety factors

