ALICE TPC Upgrade

Lukas Kreis 4. Annual MT Meeting 13.6.2018

Overview

Introduction Chamber assembly Chamber QA

HGS-HIRe for FAIR

elmholtz Graduate School for Hadron and Ion Re

Why do we upgrade ALICE?

Rich physics program after LHC Long Shutdown 2

• Rare probes and their coupling with the medium

Benefit from ALICE detector strengths

- excellent particle identification
- tracking in high-multiplicity environment

However high statistics of Pb-Pb collisions are required

TPC Upgrade

After LS2 50 kHz Pb-Pb collision rate

Problem MWPCs would limit event rate

Solution GEMs will enable continuous data taking

Retain performance at 100 times the collection rate

Gas Electron Multiplier

Polyimide foil $\sim 50 \ \mu m$

Copper coating $\sim 5 \ \mu m$

Photolithographic etching

Very strong electric field in the holes O(50 kV/cm)

ALICE Time Projection Chamber

Outer Readout Chamber

3 stacks of 4 GEMs

S-LP-LP-S layout

Good working point Local energy resolution Ion back-flow

Space-charge distortions

 $\begin{array}{ll} \mbox{lon drift time} \sim 0.16 \ \mbox{s} & \mbox{Interaction rate 50 kHz} \\ \mbox{lon pile-up from} \sim 8000 \ \mbox{events} \\ \end{array}$

 $\mathcal{O}(20 \text{ cm})$ distortions on intrinsic resolution of $\mathcal{O}(0.02 \text{ cm})!$

Space-charge distortions

Ion drift time ~ 0.16 s Interaction rate 50 kHz Ion pile-up from ~ 8000 events

O(20 cm) distortions on intrinsic resolution of O(0.02 cm)!

5 ± 3.5 Events pile-up in the TPC Electron drift time ~ 92 µs

5 ± 3.5 Events pile-up in the TPC Electron drift time ~ 92 µs

Challenging reconstruction no trigger → no absolute z position no gating → space-charge distortion

Longitudinal cross-section of the TPC, Pb-Pb with 50 cm shift

D. Rohr

Track reconstruction

Absolute z-position

Standalone tracking in the Inner Tracking System Standalone tracking in the TPC Match TPC to ITS track based on time Improve precision by a combined fit

Space-charge distortions

Distortion map calculated using ITS and TRD

Lukas Kreis

Chamber assembly

GEM framing

Cutting the GEMs

Optical inspection

Checking OROC

Soldering HV connection

A DE RECEIPTER DE LA CALENCIA DE LA C

Chamber quality assurance

- 1. First Scan
- 2. Gas tightness
- 3. Gain curve
- 4. Energy resolution
- 5. Gain uniformity
- 6. Ion back-flow uniformity
- 7. Full x-ray irradiation test
- 8. HV-wire irradiation

Test setups

XY-scanning

X-ray gun and ⁵⁵Fe source

Full area irradiation

X-ray guns

Gain curve

OROC/06 $Gain = \frac{I_{pads}}{eN_eR}$ gain 10⁴ X-ray rate R number of electrons N_e 10³ ⁵⁵Fe x-ray source OROC1 slope 1.91 per 100 V, gain 2000 at 4112 V OROC2 slope 1.88 per 100 V, gain 2000 at 4139 V 10² Find voltage for a gain of 2000 OROC3 slope 1.89 per 100 V. gain 2000 at 4135 V 3800 4400 4000 4200 chamber voltage (V)

Energy resolution

Collimated ⁵⁵Fe source

Spectrum at nominal gain

Fit determines resolution

Gain and ion backflow

Ion backflow uniformity

29

Full area irradiation test

Rich physics program of ALICE after LS2

TPC upgrade needed to cope with interaction rate

GSI Detector Lab deeply involved in the upgrade

Production of chambers already reached 50 %

Backup

GEM leakage current tests

GEM Quality Assurance

- **CERN** production
- Helsinki optical check
- **GSI** framing

Leakage current measurement after every step

500 V in nitrogen environment

→ Suitable foils are selected for chamber assembly

Energy resolution

Collimated ⁵⁵Fe source

Spectrum at nominal gain

Fit determines resolution

 $OROC2 \sigma(E)/E = 12.6\%$

Energy resolution

Collimated ⁵⁵Fe source

Spectrum at nominal gain

Fit determines resolution

OROC3 $\sigma(E)/E = 10.0\%$

GEM leakage currents

- Measured for each GEM
- Before and after irradiation
- Voltage setting 250 V
- Nominal gas Ne-CO2-N2
 Charging up of GEM-foils

HV-wire irradiation

- Test stability of HV-wire connections
- 15 min per wire
- Short spikes are during
 - movement

No discharges detected 👍

Lukas Kreis